2.4: CENTRAL SYSTOLIC BLOOD PRESSURE PROVIDES ADDITIONAL INFORMATION IN RISK PREDICTION IN HEMODIALYSIS PATIENTS

Christopher C. Mayer, Julia Matschkal, Pantelis A. Sarafidis, Stefan Hagmair, Georg Lorenz, Susanne Angermann, Matthias C. Braunisch, Marcus Baumann, Uwe Heemann, Christoph Schmaderer, Siegfried Wassertheurer

To cite this article: Christopher C. Mayer, Julia Matschkal, Pantelis A. Sarafidis, Stefan Hagmair, Georg Lorenz, Susanne Angermann, Matthias C. Braunisch, Marcus Baumann, Uwe Heemann, Christoph Schmaderer, Siegfried Wassertheurer (2018) 2.4: CENTRAL SYSTOLIC BLOOD PRESSURE PROVIDES ADDITIONAL INFORMATION IN RISK PREDICTION IN HEMODIALYSIS PATIENTS, Artery Research 24:C, 70–70, DOI: https://doi.org/10.1016/j.artres.2018.10.027

To link to this article: https://doi.org/10.1016/j.artres.2018.10.027

Published online: 7 December 2019
SD greater dBPV was associated with lower IPS (beta [SD difference]; 95% CI: -0.10: -0.20 to -0.00) and EF (-0.12; -0.22 to -0.01), and borderline associated with lower MF (-0.09; -0.20 to 0.01). A 1-SD greater sBPV, however, was not associated with IPS (-0.044; -0.14 to 0.06), or EF (-0.109; -0.20 to 0.022), but was borderline associated with lower MF (-0.11; -0.21 to 0.00). This effect of greater dBPV on cognitive performance is equivalent to 3 additional years of ageing. The stronger association of dBPV than sBPV with cognitive performance may be explained by the fact that DBP is the main determinant of MAP. Excessive dBPV may then lead to inadequate cerebral perfusion. In conclusion, greater very short-to mid-term dBPV and, to a lesser extent, sBPV could be a modifiable risk factor for cognitive impairment.

2.3 OCCUPATIONAL, SPORT AND LEISURE RELATED PHYSICAL ACTIVITY HAVE CONTRASTING EFFECTS ON NEURAL BAROREFLEX SENSITIVITY. THE PARIS PROSPECTIVE STUDY III

Rachel Climie1, Pierre Boutouyrie1, Marie-Cecile Perier1, Edouard Chaussade2, Matthieu Pichhart2, Lucille Offredo2, Catherine Guilbaut1, Thomas van Sloten1, Frederique Thomas3, Bruno Pannier2, James Sharam3, Stephane Laurent4, Xavier Jouven4, Jean-Philippe Empara1

1INSERM U970, France
2APHP, Paris Descartes university, Paris, France
3Investigations Préventives et cliniques (IPC), Paris, France
4Menzies Institute for Medical Research, France
5INSERM 970, France
6INSERM, France
7INS, France

Background: Physical activity (PA) is beneficial for baroreflex sensitivity (BRS), but it is unclear whether the type of PA has similar effects on the neural (nBRS) or vascular (carotid stiffness) components of BRS. We sought to determine this in healthy adults from a community-based study via assessment of occupational (OPA), sport (SPA), leisure (LPA) and total PA (TPA).

Methods: In 8649 adults aged 50 to 75 years, resting nBRS (estimated by low frequency gain, from carotid distension rate and heart rate) and carotid stiffness were measured by high-precision carotid echotraceback. PA was self-reported using the Baecke questionnaire, which distinguishes OPA, SPA, LPA and TPA. The associations between PA and nBRS and carotid stiffness were quantified using multivariate linear regression analysis. Analyses were conducted separately in the working and non-working population.

Results: In working adults (n = 5039), OPA was associated with lower nBRS function (p = 0.026) and borderline higher carotid stiffness (p = 0.08). When stratified by education, this association remained only in those with less than tertiary education. SPA was associated with higher nBRS (p = 0.0005) and borderline lower carotid stiffness (p = 0.052). Neither LPA nor TPA was associated with nBRS or carotid stiffness. In non-working adults (n = 3610), SPA and TPA were both associated with lower carotid stiffness (p = 0.012 and p = 0.020), but not nBRS. LPA was not associated with either parameter.

Conclusion: Occupation-related PA is associated with lower nBRS function and higher carotid stiffness, especially in those with lower education. Higher amounts of sport-related PA are associated with higher nBRS and lower carotid stiffness.

2.4 CENTRAL SYSTOLIC BLOOD PRESSURE PROVIDES ADDITIONAL INFORMATION IN RISK PREDICTION IN HEMODIALYSIS PATIENTS

Christopher C. Mayer1, Julia Matschkal2, Pantelis A. Sarafidis3, Stefan Haina5, Georg Lorenz4, Susanne Angermann2, Matthias C. Braunsch2, Marcus Baumann2, Uwe Heemann2, Berend Westerhof5, Nico Westerhof5, Jonathan Mynard2,4,6

1Austrian Institute of Technology, Center for Health & Biorescources, Vienna, Austria
2Murdoch Children’s Research Institute, Parkville, VIC, Australia
3University of Melbourne, Parkville, VIC, Australia
4Royal Children’s Hospital, Parkville, VIC, Australia
5Royal Children’s Hospital, Parkville, VIC, Australia
6VU University Medical Center, Amsterdam, the Netherlands

Background: Pulse wave reflection (caused by a stiffness increase from large to small arteries) has been considered to protect against high microvascular Pulse Pressures (mPP) (1). However, according to transmission line theory, Transmission (T) and Reflection (R) coefficients are proportional (T = 1+R), implying that reflection would not be protective. Proximal arterial stiffening with aging is associated with reduced Total Arterial Compliance (TAC) and increased forward Pressure (Pfw). We hypothesized that a high TAC and low Pfw, rather than high R, are responsible for protection from mPP.

Methods: We constructed a fractal arterial tree containing 5008 vessels across 14 generations (fractal exponent 2.76, asymmetry ratio 0.8). Wave speed in each vessel was prescribed to achieve a uniform reflection coefficient (R = -0.025, 0, 0.025 or 0.05) at every junction, achieved by progressively stiffening distal vessels while keeping aortic wave speed constant (“distal-stiffening”) or by progressively stiffening proximal vessels while