2.2: GREATER BLOOD PRESSURE VARIABILITY IS ASSOCIATED WITH LOWER COGNITIVE PERFORMANCE – THE MAASTRICHT STUDY

Tan Lai Zhou, Abraham Kroon, Coen Stehouwer, Martin van Boxtel, Frans Verhey, Miranda Schram, Thomas van Sloten, Ronald Henry

To cite this article: Tan Lai Zhou, Abraham Kroon, Coen Stehouwer, Martin van Boxtel, Frans Verhey, Miranda Schram, Thomas van Sloten, Ronald Henry (2018) 2.2: GREATER BLOOD PRESSURE VARIABILITY IS ASSOCIATED WITH LOWER COGNITIVE PERFORMANCE – THE MAASTRICHT STUDY, Artery Research 24:C, 69–70, DOI: https://doi.org/10.1016/j.artres.2018.10.025

To link to this article: https://doi.org/10.1016/j.artres.2018.10.025

Published online: 7 December 2019
brachial artery with a clinically validated automatic sphygmomanometer (OMRON 705IT) and an appropriately sized cuff. Gender-specific percentiles were used for the definition of the individual BP phenotype. Carotid-femoral PWV was measured to all participants at the third clinical evaluation, with the Compilior SP device, complying with the methodological recommendations. All participants were evaluated by the same experienced clinician.

Results: Mean PWV was 6.20 ± 0.95 m/s and was higher in males compared with females (6.31 ± 0.97 m/s vs 6.02 ± 0.89, respectively; p < 0.0001). Gender-specific percentile tables, accounting for age, were obtained from the normotensive participants (n = 758), as depicted in Figure 1. The determinants of PWV were assessed through linear regression. In a multivariable model, age, gender, blood pressure and family history of cardiovascular disease were significantly associated with PWV.

Conclusion: In children and adolescents, aortic PWV is strongly influenced by age, gender, BP and genetics, in line with the available evidences in adult populations. Further studies are needed towards a thorough understanding of the arterial dynamics at these ages.

Oral Session II — Young Investigator Award

2.1 KNOCK-OUT OF MATRIX METALLOPROTEINASE-12 EXACERBATES COMPROMISED MECHANICAL HOMEOSTASIS IN ARTERIAL AGING
Bart Spronck 1, Abhay B. Spronck1, Jakub Toczek2,3,4, Jinah Han2,3,4, Mehran Sadeghi5,4, Jay D. Humphrey1,5
1Department of Biomedical Engineering, Yale University, New Haven, CT, USA
2Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, USA
3Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
4Yale Cardiovascular Research Center, New Haven, CT, USA
5Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA

Background: Matrix metalloproteinase-12 (MMP12) may modulate arterial stiffening with age [1]. We aimed to study the effect of aging on biaxial arterial stiffness in wild-type (WT) and MMP12 knock-out (MMP12-/-) mice.

Methods and Results: After euthanasia, descending thoracic (DTA) and suprarenal abdominal (SAA) aortas of young and old, WT (ages 21 ± 0 and 103 ± 1 weeks; mean ± SE) and MMP12-/- (13 ± 0 and 52 ± 0 weeks) male mice were dissected and cannulated on glass pipettes in a computer-controlled biaxial testing device. Pressure-diameter tests were performed at 95%/100%/105% of estimated in vivo stretch; axial force-length tests at pressures of 10/60/100/140 mmHg. Data were fitted using a four-fiber constitutive model [2]. WT and MMP12-/- blood pressures were comparable (133±88 vs. 126/93 mmHg; SBP/DBP; telemetry); WT aging did not influence blood pressure [3]. All metrics are therefore presented at a common pressure (figure). At first sight, MMP12-/- aging resembles WT aging: increased wall thickness (figure, panel A) leading to decreased circumferential stress (B) and decreased stored strain energy (C) [3-5]. However, in WT aging, circumferential material stiffness decreased, which did not occur in MMP12-/- (D). Structural stiffness and pulse wave velocity remained constant in WT mice but increased in MMP12-/- (E-F).

Discussion: Our findings suggest that in both WT and MMP12-/-, mechanical homeostasis with aging was compromised, a finding that was exacerbated with MMP12-/-. MMP12-/- was previously reported to reduce age-associated stiffening [1]. This contradictory finding may be explained by the use of atomic force microscopy in [1] (measuring compressive stiffness) versus our use of tensile biaxial testing.

References

2.2 GREATER BLOOD PRESSURE VARIABILITY IS ASSOCIATED WITH LOWER COGNITIVE PERFORMANCE — THE MAASTRICHT STUDY
Tan Lai Zhou 1,2, Abraham Kron 1,3, Coen Stelhouwer 1,2, Martin van Boxtel1, Frans Verhey 4, Miranda Schram 1,2,5, Thomas van Sloten 1,2, Ronald Henry 1,2,3,4
1Dept. of Internal Medicine, Maastricht University, Maastricht, the Netherlands
2Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
3Dept. of Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
4School for Mental Health and Neuroscience, Dept. of Psychiatry & Neuropsychology, Maastricht University, Maastricht, the Netherlands
5Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, the Netherlands

An increasing number of individuals will face age-related cognitive difficulties, as life expectancy has increased globally. It is therefore important to identify modifiable risk factors for cognitive impairment. Very short- to midterm blood pressure variability (BPV) may be such factor, as it may cause cerebral ischemia via various mechanisms. To this end, we investigated whether greater diastolic (dBPV) and systolic BPV (sBPV) are cross-sectionally associated with memory function (MF; n = 1804), information processing speed (IPS; n = 1793), and executive function (EF; n = 1780), in 40- to 75-year-old individuals from The Maastricht Study. A composite BPV-index was derived by standardizing and averaging within-visit, 24-hour and 7-day BPV. We performed linear regression with adjustments for age, sex, educational level, 24-hour DBP or SBP, and cardiovascular risk factors. We found that a 1-
2.3 OCCUPATIONAL, SPORT AND LEISURE RELATED PHYSICAL ACTIVITY HAVE CONTRASTING EFFECTS ON NEURAL BAROREFLEX SENSITIVITY. THE PARIS PROSPECTIVE STUDY III

Rachel Clémie 1, Pierre Boutourly 1, Marie-Cécile Perier 1, Edouard Chaussade 2, Matthieu Plichart 2, Lucile Offredo 1, Catherine Guibout 1, Thomas van Sloten 1, Frederique Thomas 3, Bruno Pannier 1, James Sharan 1, Stephane Laurent 1, Xavier Jouven 1, Jean-Philippe Empana 1

1INSERM U970, France
2APHP, Paris Descartes university, Paris, France
3Institut de Recherche Parisienne, Paris, France

Background: Physical activity (PA) is beneficial for baroreflex sensitivity (BRS), but it is unclear whether the type of PA has similar effects on the neural (nBRS) or vascular (carotid stiffness) components of BRS. We sought to determine this in healthy adults from a community-based study via assessment of occupational (OPA), sport (SPA), leisure (LPA) and total PA (TPA).

Results: In 8649 adults aged 50 to 75 years, resting nBRS and carotid stiffness were quantified using multivariate linear regression analysis. Analyses were conducted separately in the working and non-working population.

Conclusions: Occupation-related PA is associated with lower nBRS function and higher carotid stiffness, especially in those with lower education. Higher amounts of sport-related PA are associated with higher nBRS and lower carotid stiffness.

2.4 CENTRAL SYSTOLIC BLOOD PRESSURE PROVIDES ADDITIONAL INFORMATION IN RISK PREDICTION IN HEMODIALYSIS PATIENTS

Christopher C. Mayer 1, Julia Matschkar 3, Pantelis A. Sarafidis 4, Stefan Hagemir 1, Georg Lorenz 5, Susanne Angermann 5, Matthias C. Braunsch 5, Marcus Baumann 1, Uwe Heemann 1, Christoph Schmaderer 1, Siegfried Wasserteurer 1

1AIT Austrian Institute of Technology, Center for Health & Bioreosources, Vienna, Austria
2Department of Nephrology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
3Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece

Background: Association of Ambulatory Blood Pressure Monitoring (ABPM) with mortality depends on cardiac function in hemodialysis patients. Evidence for the predictive power of central Systolic Pressure (cSBP) is inconclusive. This study thus aimed to investigate the additional information of ambulatory cSBP in risk prediction in a cohort of hemodialysis patients.

Methods: Within the ISAR-study cohort, 344 hemodialysis patients underwent 24-h ABPM on the dialysis day. All-cause mortality and cardiovascular mortality served as endpoints. Risk prediction was performed using Cox regression in patients with or without atrial fibrillation (AF) or heart failure (HF) for peripheral (pSBP) and central systolic pressure calibrated with peripheral systolic and diastolic pressure (cSBP1) or peripheral mean and diastolic pressure (cSBP2).

Results: During a mean follow-up of 37.6 (17.5 SD) months, 115 patients died, of whom 47 due to cardiovascular reasons. In patients with AF or HF, a negative association to mortality could be observed, independent of pressure location and calibration (see Table). In patients without AF or HF, these associations were to the opposite directions and cSBP2 was superior to pSBP and cSBP1 for all-cause (pSBP; HR = 1.01, p = 0.30; cSBP1: HR = 1.00, p = 0.77; cSBP2: HR = 1.01, p = 0.06) and cardiovascular (pSBP: HR = 1.03, p = 0.02; cSBP1: HR = 1.02, p = 0.06; cSBP2: HR = 1.03, p = 0.003) mortality. This circumstance was confirmed in multivariable analysis combining pSBP and differences between pSBP and cSBP (see Table).

Conclusions: This study provides evidence for the additional information of central systolic blood pressure and its dependency on calibration in risk prediction in hemodialysis patients. Further studies are needed to confirm these findings.