P.051: EVALUATION OF ENDOTHELIAL FUNCTION WITH NON-INVASIVE METHODS IN DIFFERENT CARDIOVASCULAR DISEASES

J. Nemcsik*, J. Egresits, J. Borvendég, E. Kolossváry, E. Finta, K. Farkas, I. Kiss

To cite this article: J. Nemcsik*, J. Egresits, J. Borvendég, E. Kolossváry, E. Finta, K. Farkas, I. Kiss (2006) P.051: EVALUATION OF ENDOTHELIAL FUNCTION WITH NON-INVASIVE METHODS IN DIFFERENT CARDIOVASCULAR DISEASES, Artery Research 1:S1, S39–S39, DOI: https://doi.org/10.1016/S1872-9312(07)70074-1

To link to this article: https://doi.org/10.1016/S1872-9312(07)70074-1

Published online: 21 December 2019
waveform. We investigated this during cardiac catheterisation, examining the effects of pacing and nitroglycerin (NTG) on estimation of central systolic pressure from the peripheral pulse.

Methods: Patients undergoing coronary angioplasty (n = 11, aged 48 to 72 years) participated. A Millar SPC-8450 or fluid filled catheter was placed in the aortic root and a pacing wire in the right atrium. Peripheral digital arterial waveforms (Finometer) and aortic waveforms were obtained at baseline, during pacing at 20 bpm above resting heart rate and during a recovery period for 30 min. The aim of this study was to investigate if the exercise induced changes are dependent on endothelium-derived NO. We used the NO synthase inhibitor Nω-nitro-L-arginine (L-NMMA) to test this.

Results: Exercise reduces systolic augmentation in the peripheral pulse wave, an effect similar to that produced by the nitric oxide (NO) donor nitroglycerin (NTG). The changes produced by exercise persist into the recovery period for 30 min. The aim of this study was to investigate if the exercise induced changes are dependent on endothelium-derived NO. We used the NO synthase inhibitor Nω-nitro-L-arginine (L-NMMA) to test this.

Conclusions: These data suggest that central systolic blood pressure can be estimated directly from non-invasive finger waveforms even during intervention such as pacing and NTG that produce a marked change in peripheral waveforms.

P.049

EFFECTS OF INHIBITION OF NITRIC OXIDE SYNTHASE ON THE PERIPHERAL ARTERIAL WAVEFORM RESPONSE TO EXERCISE

S.M. Munir *, B. Jiang, A. Guilcher, S. Brett, S. Redwood, P.J. Chowienczyk. Cardiovascular Division, King’s College School of Medicine, London, United Kingdom

Introduction: Exercise reduces systolic augmentation in the peripheral pulse wave, an effect similar to that produced by the nitric oxide (NO) donor nitroglycerin (NTG). The changes produced by exercise persist into the recovery period for 30 min. The aim of this study was to investigate if the exercise induced changes are dependent on endothelium-derived NO. We used the NO synthase inhibitor Nω-nitro-L-arginine (L-NMMA) to test this.

Methods: Healthy volunteers (n = 10, 5 female, aged 19 to 33 years) participated in a 2-phase randomised controlled cross-over study. L-NMMA (6 mg/kg i.v. over 5 min) and saline placebo were given immediately before exercise in two occasions separated by at least 5 days. Mean arterial blood pressure (MAP by Finapress), radial augmentation index (Rαx by SphygmoCor) and cardiac output (innocor) measurements were made at baseline, during infusion of L-NMMA/saline immediately before exercise, during exercise (except for radial artery measurements) and during recovery. Peripheral vascular resistance (PRV) and cardiac output. During exercise, workload increased from 25 W to 150 W by increments of 25 W at 2 min intervals.

Results: Before exercise, L-NMMA increased mean arterial blood pressure (85.1±1.3 mmHg vs. 101.2±4.3 mmHg, P<0.01), peripheral vascular resistance (16.4±0.7 vs. 24.7±1.7 mmHg/ml/min, P<0.01) and Rαx (50.2±4.5 vs. 70.2±6.5% vs. 0.01) and decreased heart rate (65.6±5.7 vs. 49.1±2.8 bpm, P>0.05). After exercise, heart rate and PRV were similar when compared to baseline, while lower MAP and Rαx were measured after L-NMMA and saline. However, L-NMMA attenuated the exercise induced fall in Rαx so that Rαx was higher after L-NMMA compared to saline at 15 min in recovery (49.5±5.3 vs. 36.0±4.4%, P<0.02).

Conclusion: These data suggest, that although endothelium derived NO has little effect in regulating Rαx during/after exercise, it may have a role in mediating exercise induced changes in the pulse waveform.

P.050

THE INSULIN SENSITIZER ROSIGLITAZONE IMPROVES ENDOTHELIAL FUNCTION IN PATIENTS WITH TYPE 2 DIABETES ON INSULIN

K. Papathanasiou *, K.K. Naka *, N. Kazakos1, K. Pappas2, K. Liveris4, D. Makryliannisis, A. Tsatsoulis1, L.K. Michalis1, I.Michaeliades Cardiac Center, University of Ioannina, Ioannina, Greece, 2Department of Endocrinology, Hatziskotia General Hospital, Ioannina, Greece, 3Department of Endocrinology, University Hospital of Ioannina, Ioannina, Greece

Aim: Thiazolidinediones (TZDs) are insulin sensitizers used to improve glycemic control in diabetic patients. TZDs have also been reported to improve endothelial function in obese patients with insulin resistance and in diabetic patients on oral treatment. However, little is known about the vascular effects of TZDs in patients with type 2 diabetes treated with insulin. The aim of our study was to assess the effect of rosiglitazone on endothelial function in type 2 diabetic patients treated with insulin.

Methods: Thirty-one diabetic patients without known coronary artery, cerebrovascular or peripheral arterial disease, who were already on an insulin regimen, were randomized into 2 groups; no treatment was added in group A (n = 14), while rosiglitazone 4 mg/day (group B, n = 17) for 6 months. Flow-mediated dilation (FMD) in the brachial artery was assessed in all patients, at baseline and at follow-up.

Results: At baseline, the 2 groups did not differ in age (mean±SD; 67.3±6.4 vs 64.7±7.6 years, respectively, p=ns), or any measured variable. In group A there were no significant changes at 6 months in any variable except for diastolic blood pressure that dropped from 79.7±7 to 72.1±12 mmHg (p<0.05). In group B a significant reduction in glycated haemoglobin from 8.8±0.1 to 7.8±0.1% (p<0.005) and fasting plasma glucose from 164±164 to 144±161 mg/dl (p<0.05) was observed at 6 months, while FMD significantly improved from (1.43±1.6) to 2.98±1.8% (p<0.005).

Conclusions: In insulin-treated type 2 diabetic patients, treatment with rosiglitazone for 6 months has a beneficial effect on glycemic control and endothelial function.

P.051

ASSESSMENT OF ENDOTHELIAL FUNCTION WITH NON-INVASIVE METHODS IN DIFFERENT CARDIOVASCULAR DISEASES

J. Nemciik *, J. Egereits, J. Borvendeg, E. Kolaszynsky, E. Finta, K. Farkas, I. Kiss, Szent Imre Teaching Hospital, Department of Angiology and Nephrology, Budapest, Hungary

The aim of our study was to evaluate microvascular reactivity and arterial stiffness with non-invasive methods in patients with different cardiovascular risk factors. Following blood pressure measurement, skin microcirculation was studied with laser Doppler flowmetry (Periflux 5001). The effect of local heating and cold (44°C, 1 min) and the postocclusive reactive hyperemia (PORH; 220 mmHg, 3 min) were measured. Arterial stiffness was evaluated with the newly developed TensioClinic Arteriograf instrument which calculate the wave pulse velocity (PWV, m/s) and augmentation index (Aix, %). Healthy controls (CONT, n = 13), patients with essential hypertension (EH, n = 13), with essential hypertension and peripheral artery disease (EH-PAD, n = 22), and essential hypertension and 2-type diabetes mellitus (EH+DM, n = 25) were measured. Pulse pressure (PP) was higher in EH-PAD (62.8±3.2 mmHg, p<0.05) and EH+DM (67.6±3.1 mmHg, p<0.001) groups compared with CONT (52.5±3.4 mmHg). Aix, PWV and the PORH were significantly different in healthy controls (-62.1%, 7.01 m/s, 393.77%, resp.) compared to the patient groups. These parameters were significantly different in the EH (-34.2%, 7.91 m/s, 292.77%), EH-PAD (65.1±33%) and EH+DM (453.1±45%) compared with the CONT (1049±133%). Significant correlation was found between the PORH and Aix (r = 0.54, p<0.001) and PP and Aix (r = 0.42, p< 0.05). Using these non-invasive methods there is a growing possibility to diagnose endothelial dysfunction in patients with different cardiovascular diseases. Prospective studies are needed to evaluate the prognostic value and the utility in therapy follow-up of these methods.

P.052

BLOOD PRESSURE AND LARGE ARTERIAL ELASTIC PROPERTIES. BENEFIT OF BETA XLAXOL IN HYPERTENSION

F.T. Ageev, T.A.A. Orlova*, B.D. Kulev, O.N. Baldina. Cardiology Research Center, Moscow, Russia

Background and Aim: Large artery damage is a major contributory factor to cardiovascular morbidity and mortality of patients with hypertension. As shown ASCOT and other study, beta-blockers appear to be less effective than other drugs in improving outcome in hypertensive patients, and a potential explanation may be that beta-blockers are less effective in reducing arterial stiffness. However, the aim of this study was to prove otherwise while assessing the direct effect of cardioselective beta-adrenoceptor blocker betaxolol (Lokren) on arterial distensibility in patients with mild, moderate and severe hypertension.

Materials and Methods: 50 hypertensive patients (mean age 54.7±14.3 years, 28 male, 22 female) received betaxolol in individual titrated doses 10-40 mg (mean dose 14.7±6.8 mg) daily for 3 months. The examination comprised routine tests, ECG, blood glucose, total cholesterol, triglycerides. The assessment of arterial stiffness was done by way of measuring brachial artery pulse wave velocity (baPWV). Systemic arterial compliance was estimated through brachial Augmentation Index (AIX). Endothelial function was calculated based on flow-mediated dilation (FMD) parameters.

Results: The treatment produced a significant reduction in systolic (by 7.0±7.8 mmHg) and diastolic BP (-12.3 mmHg). No fluctuation of AIx was monitored which should be attributed to the pulse decrease from 74.3 to 60.6 beats/min (p<0.001). Significant decrease of baPWV (by 8.1%) and increase of FMD (by 10.9%) was observed. There was an insignificant rise