P.017: THE ROLE OF THE CORONARY MICROCIRCULATION IN DETERMINING BLOOD FLOW

J.E. Davies*, N. Hadjiloizou, J. Aguado-Sierra, A.D. Hughes, K.H. Parker, J. Mayet


To link to this article: https://doi.org/10.1016/S1872-9312(07)70040-6

Published online: 21 December 2019
P.013 LONGITUDINAL STUDY OF VASCULAR MARKERS OF PREMATURE ATHEROSCLEROSIS AND METABOLIC CORRELATES IN HIV-INFECTED CHILDREN

T. Bradley*, A. Bitnun, C. Sloarach, C. Arnesson, M. Cheung, E. Sochett, B. McCrindle, S. Read, S. King. The Hospital for Sick Children, Toronto, Canada

Purpose: To determine the presence of vascular markers of premature atherosclerosis and metabolic correlates in a prospectively followed cohort of antiretroviral treated HIV-infected children.

Methods: Vascular assessment included: carotid intima-media thickness and brachial artery reactivity using vascular ultrasound; peripheral pulse wave velocity (PWV) using photoplethysmography; central PWV, arterial stiffness and impedance indices using an Echo-Doppler method; and only at follow-up, augmentation index and PWV by applanation tonometry. Disease markers, oral glucose tolerance, fasting lipid profiles and abdominal fat (single slice CT scan) were also determined.

Results: Twenty children were assessed at baseline (median age 12.6 [range 8.3-18.5] years; 50% female) and follow-up 21-25 months later. All were on combination antiretroviral therapy at baseline, but 5 were off therapy at follow-up with fewer receiving protease inhibitors. Resting systolic blood pressure and pulse pressure increased significantly over the study period (both p < 0.0001), as did elastic modulus, stiffness index and input impedance (p = 0.0018, p = 0.0004, p = 0.0082, respectively). PWV measures by the different methods were not shown to correlate significantly. Dyslipidemia and abnormal glucose metabolism were present in 14 and 2 at baseline, and in 7 and 0 at follow-up, respectively. Visceral, subcutaneous and total abdominal fat content increased over time, but not significantly so.

Conclusions: An increase in measures of large arterial wall stiffness was observed over time. The reduction in dyslipidemia at follow-up may be related to fewer children receiving protease inhibitors. The potential risk of premature atherosclerosis in HIV-infected children on antiretroviral therapy warrants long-term monitoring of metabolic profiles and vascular function.

P.014 VASCULAR MARKERS OF PREMATURE ATHEROSCLEROSIS IN PAEDIATRIC SYSTEMIC LUPUS ERYTHEMATOSUS AND DISEASE, THERAPY, METABOLIC AND INFLAMMATORY CORRELATES


Purpose: Controversy exists as to whether the dyslipidemia and premature atherosclerosis which occurs in Systemic Lupus Erythematosus (SLE) is more due to disease activity or the therapy. We sought to determine the presence and correlates of vascular markers of premature atherosclerosis in paediatric SLE.

Methods: Vascular assessment included: carotid intima-media thickness and brachial artery reactivity using vascular ultrasound; peripheral pulse wave velocity (PWV) using photoplethysmography; central PWV, arterial stiffness and impedance indices using an Echo-Doppler method. These vascular indices were converted to z-scores from normal population data, and tested for normality with single sample t-tests. Augmentation index and PWV, using applanation tonometry, were only assessed in the latter half of the cohort. Disease activity scores, disease duration, cumulative prednisone dose, other medication use and fasting lipid, glycemic and inflammatory profiles were also determined and Pearson correlations performed.

Results: Seventy paediatric SLE were assessed (median age 15.7 [7.3-18.7] years and diseased duration 1.4 [0.1-11.0] years, 80% females). The mean z-score adjusted data was significantly increased from normal for central PWV (+1.1, p = 0.0001), input (+0.3, p = 0.04) and characteristic impedance (+0.8, p = 0.0001). Correlations were found between aortic elastic modulus and higher fasting glucose (R = 0.34, p = 0.007), and between stiffness index and homocysteine levels (R = 0.38; p = 0.008).

Conclusions: In treated paediatric SLE of relatively short duration, dyslipidemia, abnormal glycemic and inflammatory profiles were relatively common. Some stiffness measures were increased and others correlated with known atherosclerotic risk factors. These patients warrant long-term monitoring of vascular function and traditional and non-traditional risk factors.

P.015 ARE NITRIC OXIDE SYNTHASE AND CYCLOOXYGENASE PRODUCTS INVOLVED IN ACETYLCHOLINE VASODILATING EFFECTS "IN VIVO"?

L.B.K. Resstel, F.M.A. Corrêa*. Department of Pharmacology, School of Medicine of Ribeirão Preto-USP, Ribeirão Preto, Brazil

It is current understanding in the literature that acetylcholine (ACH) vasodilating effect is endothelium-dependent. Also, different endothelial substances such as NO, EDHF and prostanooids can mediate ACH-induced vasodilation in different vessels. Although ACH-induced relaxation of isolated rat aorta rings is mainly related with NO release it is also dependent on prostanooids because pretreatment with indomethacin shifted the ACH curve to the right, reducing maximal effect (Vizioli et al., J Smooth Muscle Res, 41: 271-281, 2003).

Consequently, one should expect that nitric oxide synthase (NOS) and cyclooxygenase (COX) inhibition should affect ACH-induced vasodilation "in vivo". To test this hypothesis we studied the effect of i.v. pretreatment with L-NAME (20 mg/kg), indomethacin (5 mg/kg) or its combination on the response to i.v. infusion of ACH in urethane-anesthetized rats. ACH infusion caused progressive blood pressure (BP) fall up to -40 mmHg, which was completely abolished by homatropine methylbromide (1 mg/kg). Although L-NAME significantly increased baseline BP (-50 mmHg) indicating NOS blockade, the response to ACH was not significantly affected. Indomethacin shifted the ACH curve to the left, suggesting that COX blockade potentiates the response to ACH "in vivo", as opposed to what was observed in isolated aortic rings. After the combined NOS and COX inhibition, the hypotensive response to ACH infusion was not significantly different from that observed prior to pretreatment. The present results disagree with those reported in isolated vessels and raise doubts on the mechanism actually involved in the hypotensive response to ACH "in vivo".

P.016 INCREASED ARTERIAL STIFFNESS IN YOUNG PATIENTS WITH RHEUMATOID ARTHRITIS

A. Cypliene1 *, A. Laucevicius2, A. Venalis1, A. Ryliškėtė1, J. Dadoniene1, Z. Petronulionienė1, M. Kovaile2. 1Institute of Experimental and Clinical Medicine at Vilnius University, Vilnius, Lithuania, 2Clinics of Heart Diseases, Vilnius University; Centre of Cardiology and Angiology, Vilnius, Lithuania

Background: Chronic inflammation may impair arterial function and lead to an increase of their stiffness and risk of developing early atherosclerosis. The aim of the study was to assess whether rheumatoid arthritis (RA) and high level of C-reactive protein can influence systemic arterial stiffness and aortic pulse wave velocity (PWV) in patients with RA.

Methods: We studied 53 RA patients (age 40.1 ±9.8 years) with moderate and high disease activity (DAS28 3.21-7.05) and 53 controls (age 39.7 ±8.1 years). Blood test included serum lipid profile, glucose and high-sensitivity CRP (hsCRP) measurement. The carotid-radial PWV and augmentation index (AIx) were assessed noninvasively by applanation tonometry (Sphygmocor v7.01, AtCor Medical).

Results: In RA patients the adjusted for heart rate AIx (21.3 ±13.3% vs. 12.7 ±13.2%: p = 0.001) and hsCRP (31.32 ±40.29 mg/l vs. 1.58 ±3.36 mg/l: p = 0.001) were significantly higher as compared to the controls. Multivariate regression analysis revealed that RA is significant predictor of increased PWV adjusted for mean blood pressure (p < 0.001). In RA patients and control group correlations were not found between hsCRP and AIx (r = 0.044; p = 0.752 vs. r = 0.215; p = 0.121) as well as between hsCRP and PWV (r = 0.076; p = 0.589 vs. r = -0.014; p = 0.921).

Conclusion: RA is associated with the increase of aortic and systemic arterial stiffness. Elevation of serum hsCRP is not related to the increase of arterial stiffness neither in RA patients nor in controls.

P.017 THE ROLE OF THE CORONARY MICROCIRCULATION IN DETERMINING BLOOD FLOW

J.E. Davies*, N. Nadjilozou, J. Aguado-Sierra, A.D. Hughes, K.H. Parker, J. Mayet. International Centre for Circulatory Health, St Mary's Hospital & Imperial College, London, United Kingdom

Background: The coronary flow velocity profile is strikingly different from that of the proximal aorta, even though they are only a few centimetres apart and have almost identical pressure waveforms. We use wave intensity analysis to help explain this phenomenon, and to explore the importance of the coronary microcirculation in the regulation of coronary blood flow.

Method and Results: In 18 subjects (mean age 54 years, 12 female) we measured simultaneous pressure and Doppler velocity using intra-arterial wires in the proximal left main stem, left anterior descending, circumflex artery and proximal aorta. Wave intensity analysis was used to separate the
pressure waveform into its proximal- and distal-originating components. In the aorta, the flow velocity waveform follows the aortic pressure waveform reasonably closely, although the peak velocity occurs before the peak pressure. Using wave intensity analysis we found that more than 70% (47.3 versus 19.7 mmHg, p < 0.001) of the increase in the aortic pressure waveform was from proximally-originating pressure. In contrast, in the coronary arteries, only 48% of the increase in pressure came from a proximal origin and the remainder from a distal (microcirculation) origin (31.3 ± 11.5 versus 32.7 ± 8.4 mmHg, p < 0.001). Distal-originating pressure rises prior to proximal-originating pressure (41.2 ± 18 m/s versus 104.2 ± 25 m/s, p < 0.001). This excess distal-originating pressure attenuates the rise of coronary flow velocity (0.2 ± 0.23 m/s), which is only reversed during cardiac relaxation when distal-originating pressure falls rapidly, and coronary flow velocity peaks (0.58 ± 0.49 m/s).

Conclusion: Aortic flow velocity is largely driven by the proximally-originating aortic pressure. In contrast, coronary blood flow velocity is heavily regulated by the coronary microcirculation. During cardiac contraction distal coronary pressure exceeds proximal-originating pressure - restricting blood flow. Only after cardiac relaxation begins does distal pressure fall, allowing coronary flow velocity to rise rapidly.

P.018

OPTIMIZATION OF ULTRASOUND BRACHIAL ENDOTHELIAL FUNCTION MEASUREMENTS

E. de Groot1, *, J.J.P. Kastelein1, A. Donald2, J. Deanfield2.

AIMS: To optimize brachial artery ultrasound techniques in order to maximize reproducibility and feasibility of the testing procedure.

Methods: This prospective single-center study was conducted in 96 healthy volunteers aged between 20 and 40 years. Brachial ultrasound was performed with a GE Healthcare (15 MHz) ultrasound device. The brachial artery diameter and blood flow velocity were assessed before and at 2 minutes after cuff release, respectively. The intra- and inter-observer variability was assessed.

Results: The mean intra- and inter-observer variability was 0.25(1.12)% and 1.50(1.25)% respectively. The correlation coefficient (r) was 0.99 for both measurements.

Conclusions: This method is feasible and reliable. The results can be used to optimize future trials.

P.019

PREREQUISITES FOR CAROTID ULTRASOUND IMAGING STUDIES IN THE IDENTIFICATION AND PREVENTION OF ATHEROSCLEROSIS

E. de Groot*, J.J.P. Kastelein. AMC Vascular Imaging, Vascular Medicine, Amsterdam, Netherlands

Background: Carotid ultrasound (CU) is a widely used non-invasive imaging technique for the evaluation of atherosclerosis. The aim of the study was to assess the relationship between intima-media thickness (IMT) measured by CU and conventional risk factors.

Methods: A total of 66.6% subjects had increased IMT (0.9 mm). Plasma levels of homocysteine (10.29 ± 2.64 vs 8.58 ± 2.61, p = 0.006), IL-6 (3.79 ± 6.63 vs 2.30 ± 0.74, p = 0.05), arterial hypertension (56% vs 43%; p = 0.006), obesity (p = 0.006) and waist circumference (98.3 ± 11.9 vs 91.40 ± 8.45, p = 0.044) were significantly higher in increased IMT group compared with normal IMT group. Logistic regression analysis of data detected that only homocysteine strongly (Exp B 1.3, CI 1.0-1.6) and independently predicts increased IMT (p = 0.015).

Conclusions: IMT is an independent risk factor of the increased IMT.

P.020

PLASMA HOMOCYSTEINE IS AN INDEPENDENT RISK FACTOR OF THE INCREASED INTIMA-MEDIA THICKNESS


Aim: To evaluate the relationship between plasma homocysteine and carotid intima-media thickness (CIMT).

Methods: A total of 87 healthy volunteers aged between 20 and 40 years were selected. Homocysteine was measured by high-performance liquid chromatography. CIMT was measured by ultrasound imaging. The relationship between plasma homocysteine and CIMT was analyzed by linear regression analysis.

Results: A significant positive correlation was found between plasma homocysteine and CIMT (r = 0.35, p = 0.015).

Conclusion: Plasma homocysteine is an independent risk factor of the increased CIMT.