P4.55: CHANGES IN CAROTID-RADIAL PULSE WAVE VELOCITY AND RADIAL-FINGER TIP SKIN VASCULAR BED TRANSIT TIME DURING AND AFTER GRADED AEROBIC EXERCISE

N. Potocnik, Z. Melik, K. Cankar, H. Lenasi


To link to this article: https://doi.org/10.1016/j.artres.2012.09.202

Published online: 21 December 2019
P4.54
SHORT-TERM HIGH SALT DIET REDUCES BRACHIAL ARTERY ENDOTHELIAL FUNCTION IN THE ABSENCE OF CHANGES IN BLOOD PRESSURE
A. Cavka 1,2, I. Grizelj 1,2, M. Goslawski 1, I. Drenjancevic 2, S. A. Phillips 1
1University of Illinois at Chicago, Chicago, IL, United States
2School of Medicine, University of Osijek, Osijek, Croatia

High salt diets are associated with impaired vascular relaxation, hypertension, and cardiovascular disease. We hypothesized that 1) short-term high salt intake impairs brachial artery endothelial function in the absence of changes in blood pressure or vascular stiffness and 2) acute exercise reverses endothelial function after elevations in salt. Healthy, inactive subjects (n=11) were fed 6 mg of sodium chloride for 7 days or normal diet and then underwent a single progressive 15 minute leg press WL session. Brachial artery flow-mediated dilation (FMD) and nitroglycerin (NTG; 0.4 mg) dilations were measured with ultrasound at baseline, after 7 days of high salt or normal salt intake, and before and after WL. Pulse wave velocity was determined before and after high salt. All subjects had normal blood pressures (mean SBP: 117±12 mmHg) before and after high salt and exercise.

Circulating plasma renin was reduced after high salt. Brachial artery FMD was reduced after high salt (12±0.7% vs. 7.5±0.9%; p=0.003). Acute exercise reduced brachial FMD on normal salt (9.6±0.9% vs. 6.6±1%; p=0.03) and there was no effect of acute exercise on FMD after high salt (7.1±0.2%; p=0.6 vs. pre exercise). Endothelium-independent responses to NTG (mean: 29±2%) and pulse wave velocities were similar before and after high salt and between groups. These data indicate 1) Elevated salt intake for 7 days impairs brachial artery endothelial function in the absence of changes in blood pressure or vascular stiffness and 2) acute resistance exercise does not restore arterial function after high salt intake.

Table 1. Anthropometric and echocardiographic data of patients with Marfan syndrome and controls.

<table>
<thead>
<tr>
<th>Marfan (N = 33)</th>
<th>Control (N = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>19 ± 8</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>60.9 ± 12.6</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.78 ± 0.10*</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>19.32 ± 3.93</td>
</tr>
<tr>
<td>ECHO (mm)</td>
<td>33 ± 7*</td>
</tr>
</tbody>
</table>

Data are reported as means ± SD. BMI = body mass index; ECHO = echocardiogram. *P ≤ 0.05 compared to control group (t-test).

Figure 1 Pulse wave velocity values at rest and at the end of exercise for the patients with Marfan syndrome (N = 33) and for the control group (N = 18). Data are reported as absolute values. *P < 0.05 compared to rest (t-test).

P4.56
INCREASED LEFT VENTRICULAR ELASTANCE AT END-EJECTION IS ASSOCIATED WITH LOWER ARTERIAL COMPLIANCE AND REDUCED VENTRICULAR RELAXATION
K. D. Reesink, C. M. Park, J. E. Davies, N. Chaturvedi, A. D. Hughes
Imperial College London, London, United Kingdom

Background: The response of a normal left ventricle (LV) to an increase in afterload to increase its rate of relaxation. In diastolic dysfunction LV relaxation is impaired and passive chamber stiffness is increased. We investigated the potential of incremental LV elastance measurements, as obtainable by non-invasive means, to assess LV relaxation performance.

Methods and Results: We obtained paired central arterial pressure and LV volume curves from PulseCor and 3D-echo recordings in 62 consecutive