**P1.32: GENDER DIFFERENCES RELATED TO INCREASED VASCULAR AGE IN HYPERTENSIVE PATIENTS**


**To link to this article:** https://doi.org/10.1016/j.artres.2012.09.069

Published online: 21 December 2019
P1.31
INCREASED VASCULAR AGE IN TREATED HYPERTENSIVE PATIENTS WITH ELEVATED AUGMENTATION INDEX
M. F. Neves 1, A. R. Cunha 1, M. A. Casanova 1, M. Trindade 1, J. de’El-Rei 2, F. Medeiros 2, W. Olgman 1
1State University of Rio de Janeiro, Rio de Janeiro, Brazil
2Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil

Objective: To identify clinical and vascular parameters associated with increased augmentation index (Aix) in treated hypertensive patients.

Methods: Hypertensive patients, aged 30–74 years, were evaluated using high-resolution ultrasonography for brachial flow-mediated dilation (FMD), EndoPat 2000 for peripheral arterial tonometry and Sphygmocor to obtain central hemodynamic parameters. Vascular age was calculated after estimating Framingham risk score. Patients (n = 177) were distributed into three equal groups (n = 59 each) according to Aix values: 1st tertil (T1) Aix < 28%, 2nd tertil (T2) Aix 28–37%, 3rd tertil (T3) Aix > 37%.

Results: The mean age was not different among the groups (55.1±11 vs 57.0±10 vs 58.8±8 years), T3 group presented significant increase in brachial SBP (139±17 vs 145±17 vs 151±22 mmHg, p = 0.006), aortic SBP (126±16 ± 13±17 vs 148±24 mmHg, p = 0.001) and aortic pulse pressure (41±10 vs 49±14 vs 60±21 mmHg, p < 0.001). Aix obtained by EndoPat (14±13 vs 30±19 vs 30±18, p < 0.001) and vascular age (71±16 vs 77±13 vs 78±12, p = 0.019) were significantly greater in T2 and T3 compared to T1. There was no significant differences in endothelium function evaluated by brachial FMD (7.5±5.1 vs 8.9±5.5 vs 9.2±6.7 %) and through reactive hyperemia index by EndoPat (1.9±0.5 vs 2.2±0.7 vs 1.9±0.4 units). Aix was not correlated to age, but was significantly correlated to vascular age (r = 0.22, p = 0.005), brachial SBP (r = 0.21, p = 0.006) and to aortic SBP (r = 0.40, p < 0.001).

Conclusion: In this population of treated hypertension, increased vascular stiffness characterized by an elevated augmentation index was associated to increased vascular age but not with worse endothelial function.

P1.32
GENDER DIFFERENCES RELATED TO INCREASED VASCULAR AGE IN HYPERTENSIVE PATIENTS
M. F. Neves 1, M. A. Casanova 1, A. R. Cunha 1, M. Trindade 1, J. de’El-Rei 2, F. Medeiros 2, W. Olgman 1
1State University of Rio de Janeiro, Rio de Janeiro, Brazil
2Federal University of State of Rio de Janeiro, Rio de Janeiro, Brazil

Objective: To characterize gender differences in clinical and vascular parameters in treated hypertensive patients with increased vascular age.

Methods: Hypertensive patients, both genders, aged 30–74 years, were included. Brachial flow-mediated dilation (FMD) and carotid-femoral pulse wave velocity (CFPWV) were evaluated, CFPWV was normalized by mean BP (cfPWV-N). Vascular age was calculated according to Framingham Heart Study. The median of vascular age was 76 years, and subjects were divided into four groups: women with lower vascular age (LVA, <76 years, n = 50) or higher vascular age (HVA, >76 years, n = 82), men with LVA (n = 26) or HVA (n = 27).

Results: LVA women presented greater systolic BP (143±15 vs 132±16 mmHg, p < 0.001) compared to LVA men, no difference between gender was observed in HVA groups (154±15 vs 152±17 mmHg) and diastolic BP was similar in LVA (88±10 vs 88±13 mmHg) and in HVA (89±10 vs 92±14 mmHg) groups. Men with HVA presented greater cfpwv (12±2 vs 10±2 m/s, p = 0.05), cfpwv-N (11±2 vs 9±2 m/s, p = 0.05) compared to HVA women. FMD was significantly reduced in women when compared LVA and HVA groups (11.7± 6 vs 5±6, p = 0.003), but no significant difference was noted in men due to reduced values even in LVA group (8±5 vs 6±5 %, p = 0.766).

Conclusion: In this population of treated hypertensive patients, endothelial dysfunction developed earlier in men than in women, and vascular stiffness was more exacerbated in men with higher vascular age, showing more premature and advanced vascular disease in this gender.

P1.34
BLOOD PRESSURE VARIABILITY ASSOCIATES WITH CAROTID INTIMA-MEDIA THICKNESS BUT NOT CAROTID DISTENSIBILITY AND PULSE WAVE VELOCITY IN 1125 PARTICIPANTS
R. Schutte 1,2, L. Thijss 1, Y. Liu 1, K. Asayama 1,2, Y. Gu 1, T. Kuznetsova 1, L. Jacobs 1, J. A. Staessen 1,4
1Studies Coordinating Centre, Division of Hypertension, University of Leuven, Leuven, Belgium
2Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
3Tokoho University Graduate School of Pharmaceutical Sciences and Medicine, Sendai, Japan
4Department of Epidemiology, Maastricht University, Maastricht, Netherlands

Background: Blood pressure variability (BPV) is related to cardiovascular and cerebrovascular diseases. Carotid intima-media thickness (CIMT) is strongly associated to increased BPV. This study tested the association between CIMT and pulse wave velocity (PWV), and BPV.

Methods: The Cardiovascular Health Study (CHS) is a prospectively followed study of 5201 community-dwelling adults ≥65 years of age. CIMT was measured using high-resolution B-mode ultrasonography. BPV was calculated by standard deviation of office BP for the previous 4 years. The relationship between CIMT and BPV was analyzed as categorical (HR, 1.01 vs 1.00) and linear (HR, 0.03 vs 0.02). Multivariate analysis was performed controlling for potential confounders.

Results: After adjustment for age, office BP and other risk factors, an increase in office BP was associated to increased CIMT (HR, 1.01 vs 1.00, p = 0.039). A higher BPV was associated to increased CIMT (HR, 1.01 vs 1.00, p = 0.039). The association was stronger in participants with high CIMT (HR, 1.02 vs 1.01, p = 0.018). The association was weaker in participants with low CIMT (HR, 1.01 vs 1.00, p = 0.039). A higher BPV was associated to increased CIMT (HR, 1.01 vs 1.00, p = 0.039).

Conclusion: A higher BPV was associated to increased CIMT. The association was stronger in participants with high CIMT (HR, 1.02 vs 1.01, p = 0.018). The association was weaker in participants with low CIMT (HR, 1.01 vs 1.00, p = 0.039). A higher BPV was associated to increased CIMT (HR, 1.01 vs 1.00, p = 0.039).

P1.35
MATRIX METABOLIC SYNDROME: A SYSTEMATIC REVIEW AND META-ANALYSIS
M. G. Schultz 1, P. Cotal 1, V. J. Cleland 1, L. Blizzard 1, T. H. Marwick 1, J. E. Sharran 1
1Menzies Research Institute Tasmania, Hobart, Australia
2Cleveland Clinic, Cleveland, United States

Background: The prevalence of metabolic syndrome (MetS) is increasing worldwide. MetS is associated with increased cardiovascular risk, but the exact mechanism of the risk remains a matter of controversy. Various clusters of the metabolic syndrome components and other risk factors, such as advanced glycation end-products (AGE) and glycated hemoglobin (HbA1c), are considered, but large-scale studies are lacking. Therefore we aimed to investigate predictive value of MetS components and other factors on the arterial markers as a surrogate endpoint of cardiovascular risk.

Methods: A cross-sectional study of 3168 MetS subjects (aged 55±5, 69% women) was carried out by assessing various traditional and nontraditional cardiovascular risk factors and gender of arterial markers: intima media thickness (IMT), carotid, radial-femoral and aortic stiffness, ankle-brachial stiffness index (CAVI), endothelial function in brachial artery, finger and skin.

Results: The most common determinants of arterial markers by multiple linear and logistic regression analysis (p < 0.05) were arterial hypertension (AH) and gender. Significant predictors of endothelial function in microcirculation predominantly were AH and glycemia-related parameters: AGE and HbA1c in finger, and fasting glucose in skin. In the brachial artery, endothelial function was predicted by age, AH and gender. Gender, AH, obesity markers, and glucose abnormalities were significant predictors of IMT and various arterial stiffness parameters. However, typical dyslipidemia remained a significant predictor of only 2 out of 14 arterial parameters assessed, namely, of IMT and CAVI.

Conclusion: Our study suggests that gender and hypertension, but not dyslipidemia, are the most common determinants of the variability of arterial parameters in subjects with MetS.