PO-15: THE TEMPORAL RELATIONSHIP BETWEEN METABOLICALLY HEALTHY OBESITY AND CAROTID ATHEROSCLEROSIS IN MEN

Sae Young Jae, Yoon Ho Choi

To cite this article: Sae Young Jae, Yoon Ho Choi (2014) PO-15: THE TEMPORAL RELATIONSHIP BETWEEN METABOLICALLY HEALTHY OBESITY AND CAROTID ATHEROSCLEROSIS IN MEN, Artery Research 8:4, 172–172, DOI: https://doi.org/10.1016/j.artres.2014.09.021

To link to this article: https://doi.org/10.1016/j.artres.2014.09.021

Published online: 7 December 2019
Conclusions: These results demonstrate that the burden of carotid atherosclerosis was not increased in the MHO when compared with the MHNW in both cross-sectional and longitudinal associations.

PO-16
REDUCED CARDIAC BAROREFLEX SENSITIVITY IS ASSOCIATED WITH GREATER AORTIC STIFFNESS IN MIDDLE-AGED/OLDER HUMANS:
BENEFICIAL EFFECT OF HABITUAL AEROBIC EXERCISE

Stephen A. Harris 1, Harald M. Stauss 2, Douglas R. Seals 3, Gary L. Pierce 4
1Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
2Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA

Introduction: Sedentary aging is characterized by reduced cardiac baroreflex sensitivity (BRS) and increased aortic stiffness (aortic pulse wave velocity, aPWV) among sedentary and endurance-trained MA/O adults. However, MA/O adults who perform habitual endurance exercise demonstrate lower CVD risk perhaps in part from reduced aortic stiffness and increased carotid BRS.

Objectives: We hypothesized that reduced BRS (sequence technique derived from intra-brachial artery BP waveforms) is associated with greater aortic stiffness (aortic pulse wave velocity, aPWV) among sedentary and endurance-trained MA/O adults, and that endurance exercise training initiated in previously sedentary MA/O adults enhances BRS and reduces aPWV.

Methods and results: In a cross-sectional study, MA/O sedentary (MA/O-S, n = 24, age 62 ± 4 yrs, VO2max 26 ± 1 ml/kg/min) adults demonstrated reduced BRS (11.7 ± 1.5 vs. 40.7 ± 8.6 mmHg, P < 0.05) and greater aortic stiffness (aPWV 9.7 ± 0.8 vs. 6.4 ± 0.8 m/sec, P < 0.05) compared with young sedentary (YS, n = 6, age 22 ± 2 yrs; VO2max 39 ± 2 ml/kg/min) adults. MA/O endurance-trained (MA/O-T, n = 15, age 61 ± 2 yrs, VO2max 46 ± 1 ml/kg/min, P < 0.05) adults had greater BRS (24.3 ± 4.0 mmHg) and smaller aPWV (8.0 ± 0.3 m/sec, P < 0.05) than MA/O-S. In the entire cohort after adjustment for age and mean blood pressure, aPWV was inversely correlated with BRS (r = 0.55, P < 0.05). In a subset of MA/O-S adults (n = 18), 8 weeks of aerobic exercise training (n = 12, 6-7 days/week, 40-45 min/day, 60-80% HRmax) improved BRS (11.7 ± 2.1 vs. 16.1 ± 2.7 mmHg, P < 0.05) but not aPWV (9.8 ± 8.9 vs. 9.2 ± 0.9 m/sec, P = 0.08), while there was no change in sedentary time-controls (n = 6, P > 0.05).

Conclusions: Habitual aerobic exercise attenuates the age-related reduction in cardiac BRS and greater aortic stiffness in humans. However, short-term aerobic exercise training initiated in MA/O-S adults improves BRS but not aortic stiffness.

PO-17
A NEW ARTERIAL STIFFNESS INDEX PERMITTING ISOBARIC COMPARISONS

T. S. Phan 6, K. Khaw 6, J. K.-J. Li 7
1Rutgers University, Piscataway, NJ, USA
2Robert Wood Johnson Medical School, New Brunswick, NJ, USA

Objectives: Arterial stiffness is pressure-dependent and comparisons among individuals and between groups should be made under isobaric conditions. Statistical methods are typically employed to adjust stiffness indices for pressure-dependence. In this ongoing study, we employ our new stiffness index, CPI, which allows for explicit evaluation at a reference pressure and stroke volume, to investigate its change with age and disease.

Methods: We studied twenty-three patients (n = 23: 9 men and 14 women; mean age 70 years) that underwent diagnostic cardiac catheterization. Aortic pressure waveforms were used to evaluate CPI at a reference pressure of 80 mmHg and stroke volume of 100 mL. A closed-form expression of pressure-dependent compliance index, or CPI, was derived and computed for each subject. Linear regression was used to assess the trend of CPI with age. Results: CPI values ranged from 1.08 to 3.03 ml/mmHg. A negative correlation was found between CPI and age (r = -0.57, P < 0.01). End-stage renal disease patients had the lowest values within their respective decade of age. Patients without coronary artery disease had the higher values within their decade.

Conclusions: CPI is an index of pressure-dependent arterial compliancy. Its decrease with age, further exaggerated by presence of disease, is consistent with studies using other stiffness indices. The allowance for explicit evaluation at a common pressure relieves the need for statistical adjustments for pressure-dependence and permits a more individualized measure of arterial stiffness. Moreover, this allows separation of active and passive changes in arterial stiffness when cardiac properties or blood pressure levels are altered. Continuing studies will provide better sampling of age and disease states.