PO-14: RELATIONSHIP BETWEEN CAROTID ARTERY STIFFNESS AND ALTERED CEREBROVASCULAR HEMODYNAMICS IN SOUTH ASIAN INDIAN OLDER ADULTS

Ikdi Brar, Andrew D. Robertson, Richard L. Hughson

To cite this article: Ikdi Brar, Andrew D. Robertson, Richard L. Hughson (2014) PO-14: RELATIONSHIP BETWEEN CAROTID ARTERY STIFFNESS AND ALTERED CEREBROVASCULAR HEMODYNAMICS IN SOUTH ASIAN INDIAN OLDER ADULTS, Artery Research 8:4, 171–172, DOI: https://doi.org/10.1016/j.artres.2014.09.020

To link to this article: https://doi.org/10.1016/j.artres.2014.09.020

Published online: 7 December 2019
Results: As Figure 1 shows, at control condition, there was no difference in the eNOS protein expression between AA and CA HUVECs. The incubation of CRP significantly reduced the expression levels of eNOS on both AA and CA HUVECs in a dose-dependent manner. The reductions of eNOS protein expression in AA HUVECs at all three different concentrations were significantly greater than those in CA HUVECs.

Conclusion: AA HUVECs respond differently to CRP compared to CA HUVECs. CRP incubation causes greater reduction of eNOS expression on AA than CA HUVECs. The results suggest a possible mechanism for the racial differences in endothelial dysfunction.

PO-14
RELATIONSHIP BETWEEN CAROTID ARTERY STIFFNESS AND ALTERED CEREBROVASCULAR HEMODYNAMICS IN SOUTH ASIAN INDIAN OLDER ADULTS
Ikkip Brar, Andrew D. Robertson, Richard L. Hughson
Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada

Objectives: To investigate whether differences exist in common carotid artery (CCA) stiffness between South Asian (SA) and white Caucasian (CA) older adults, and its association with cerebrovascular hemodynamic properties.

Methods: Carotid artery stiffness indicators, including pulse pressure (PP), distensibility coefficient (DC), and compliance coefficient (CC), were measured by applanation tonometry and ultrasound imaging. Continuous blood pressure (MAP), heart rate, and middle cerebral artery blood flow velocity (MFV) using non-invasive transcranial Doppler ultrasound, were monitored in 44 age- and gender-matched SA and CA community-dwelling older adults free of cardio- and cerebrovascular diseases (22 CAs/SAs: 11 M/F in each group). The following model equations were calculated for each group:

\[
\text{CVRi} = \frac{PP}{MAP} \times \frac{DC}{CC}
\]

Results: Carotid artery stiffness was higher in SA compared to CA group, as evidenced by lower arterial compliance (CC = 601 ± 282 vs. 789 ± 323 mmHg/(ml/mmHg), respectively, \(p = 0.048\)), and greater PP (59 ± 18 vs. 46 ± 10 mmHg, respectively, \(p = 0.005\)). A significant interaction effect between ethnic group and arterial compliance on PP was observed \((r^2 = 0.562, p < 0.001)\), indicating that less compliant arteries resulted in higher PP amplitudes in SA compared to CA group. Furthermore, a moderate negative relationship between arterial compliance and CVRi was found only in the SA group \((r = -0.574, p = 0.025)\). Correspondingly, CVRi was strongly associated with lower MFV \((r = -0.925, p < 0.001)\).

Conclusions: SA group presented greater stiffness and less compliant arteries compared to CA group independent of age and gender. SA older adults appear to have impaired dampening capacity of central arteries to the changes in arterial pressure, thereby increasing the risk of hemodynamic pulsatility transmission into the brain. Consequently, an increase in CVRi might be a compensatory mechanism to protect the cerebral microcirculation, or reflect prior damage, resulting in lower MFV. These findings may aid in understanding the increased risk of cardio- and cerebrovascular diseases in people of SA origin.
There is conflicting evidence regarding the relationship between metabolically healthy obesity and the burden of carotid atherosclerosis, but whether metabolically healthy obesity is related to the progression of atherosclerosis remains unclear.

Methods: Cardiometabolic risk factors and carotid artery intima-media thickness (CIMT) in 556 men, mean aged 51 yrs (36-76 yrs), were measured at baseline and one year later. All participants were free of hypertension and type 2 diabetes at baseline. Participants were divided into four groups based on cross-classifications of body mass index (BMI) and metabolic health status using the ATP-III criteria: metabolically healthy obesity and the burden of carotid atherosclerosis, but whether metabolically healthy obesity is related to the progression of atherosclerosis remains unclear.

Purpose: We investigated the cross-sectional and follow-up associations between metabolically healthy obesity and carotid atherosclerosis.

Results: At baseline, mean CIMT was not significantly different between the MHNW and the MHO (0.58±0.12mm vs. 0.62±0.13mm, P=0.13), but was different between the MHNW and the MHO (0.64±0.13mm, P=0.01) after adjusting for age. The prevalence of carotid atherosclerosis tended to be higher in the MHO as compared to the MHNW after adjusting for age, heart rate, CRP, and VQ2max, but this was not statistically significant (Odds Ratio (OR) 1.80 95% Confidence Interval (CI) 0.93-3.52). There was an increase in the OR for carotid atherosclerosis in the MHO (OR 2.08 95% 1.16-1.73). After one year, the progression of mean CIMT was not significantly different between the MHO and the MHNW after adjusting for covariates (Δ 0.03±0.11mm vs. 0.05±0.10mm, P=0.52). Furthermore, the MHO at baseline was not significantly associated with the prevalence of carotid atherosclerosis at the second examination (OR 0.85 95% 0.39-1.87) when compared with MHNW.

Conclusions: These results demonstrate that the burden of carotid atherosclerosis was not increased in the MHO when compared with the MHNW in both cross-sectional and longitudinal associations.

PO-16

REDUCED CARDIAC BAROREFLEX SENSITIVITY IS ASSOCIATED WITH GREATER AEROgenic STIFFNESS IN MIDDLE-AGED/OLDER MENS:

BenEFICIAL EFFECT OF HABITUAL AEROBIC EXERCISE

Stephen A. Harris a, Harald M. Stauss a, Douglas R. Seals b, Gary L. Pierce a

aDepartment of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
bDepartment of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA

Introduction: Sedentary aging is characterized by reduced cardiac baroreflex sensitivity (BRS) and increased aortic stiffness (aortic pulse wave velocity, aPWV) among sedentary and endurance-trained MA/O adults, and that endurance exercise training initiated in previously sedentary MA/O adults enhances BRS and reduces aPWV.

Methods and results: In a cross-sectional study, MA/O sedentary (MA/O-S, n=24, age 62 ± 4 yrs, VO2max 26 ± 1 ml/kg/min) adults demonstrated reduced BRS (11.7 ± 1.5 vs. 40.7 ± 8.6 ms/mmHg, P<0.05) and greater aortic stiffness (aPWV 9.7 ± 0.8 vs. 6.4 ± 0.8 ms/msec, P<0.05) compared with young sedentary (YS, n=6, age 22 ± 2 yrs; VO2max 39 ± 2 ml/kg/min) adults. MA/O endurance-trained (MA/O-T, n=15, age 61 ± 2 yrs, VO2max 46 ± 1 ml/kg/min, P<0.05) adults had greater BRS (24.3 ± 4.0 ms/mmHg) and smaller aPWV (8.0 ± 0.3 m/sec, P<0.05) than MA/O-S. In the entire cohort after adjustment for age and mean blood pressure, an aPWV was inversely correlated with BRS (r=-0.55, P<0.05). In a subset of MA/O-S adults (n=18), 8 weeks of aerobic exercise training (n=12, 6-7 days/week, 40-45 min/day, 60-80% VO2max) improved BRS (11.7 ± 2.1 vs. 16.1 ± 2.7 ms/mmHg, P<0.05) but not aPWV (9.8 ± 0.8 vs. 9.2 ± 0.9 m/sec, P=0.08), while there was no change in sedentary time-controls (n=6, P=0.05).

Conclusions: Habitual aerobic exercise attenuates the age-related reduction in cardiac BRS and greater aortic stiffness in humans. However, short-term aerobic exercise training initiated in MA/O-S adults improves BRS but not aortic stiffness.

PO-17

A NEW ARTERIAL STIFFNESS INDEX PERMITTING ISOBARIc COMPARISONS

T. S. Phan a, K. Khaw b, J. K.-J. Li a

aRutgers University, Piscataway, NJ, USA
bRobert Wood Johnson Medical School, New Brunswick, NJ, USA

Objectives: Arterial stiffness is pressure-dependent and comparisons among individuals and between groups should be made under isobaric conditions. Statistical methods are typically employed to adjust stiffness indices for pressure-dependence. In this ongoing study, we employ our new stiffness index, CPI, which allows for explicit evaluation at a reference pressure and stroke volume, to investigate its change with age and disease.

Methods: We studied twenty-three patients (n=23: 9 men and 14 women; mean age 70 years) that underwent diagnostic cardiac catheterization. Aortic pressure waveforms were used to evaluate CPI at a reference pressure of 80 mmHg and stroke volume of 100 mL. A closed-form expression of pressure-dependence and permits a more individualized measure of arterial stiffness was found between CPI and age (r=-0.57, P<0.01). End-stage renal disease patients had the lowest values within their respective decade of age. Patients without coronary artery disease had the higher values within their decade.

Results: CPI values ranged from 1.08 to 3.03 mmHg/mL. A negative correlation was found between CPI and age (r=-0.57, P<0.01). End-stage renal disease patients had the lowest values within their respective decade of age. Patients without coronary artery disease had the higher values within their decade.

Conclusions: CPI is an index of pressure-dependent arterial compliance. Its decrease with age, further exaggerated by presence of disease, is consistent with studies using other stiffness indices. The allowance for explicit evaluation at a common pressure relieves the need for statistical adjustments for pressure-dependence and permits a more individualized measure of arterial stiffness. Moreover, this allows separation of active and passive changes in arterial stiffness when cardiac properties or blood pressure levels are altered. Continuing studies will provide better sampling of age and disease states.