P11.31: CLINICAL AND VASCULAR PARAMETERS CORRELATED WITH AUGMENTATION PRESSURE IN A BRAZILIAN HYPERTENSIVE POPULATION

To link to this article: https://doi.org/10.1016/j.artres.2011.10.185

Published online: 14 December 2019
A. D. Tarnoki 1, D. L. Tarnoki 1, M. A. Stazi 2, E. Medda 2, R. Cotichini 2

TWIN STUDY
HERITABILITY OF CENTRAL BLOOD PRESSURE AND PULSE PRESSURE

was associated with the increase of arterial rigidity. In the present study, the presence of the CC homozygote status registered in men.

M. F. Neves, A. K. Burla, M. A. Casanova, J. D’El-Rei, A. R. Cunha,

AUGMENTATION PRESSURE IN A BRAZILIAN HYPERTENSIVE POPULATION

The research was supported by Medexpert Ltd, Twins Days Festival (The research was supported by Medexpert Ltd, Twins Days Festival for Foreign Affairs of Republic of Italy.)

To evaluate clinical and vascular parameters in a Brazilian population presenting hypertension and increased augmentation pressure. Augmentation pressure (AP) has been considered an absolute value. Background: Many clinical variables may contribute to an increased AP in hypertensive patients, and time of diagnosis seems to be important suggesting that intensive and early antihypertensive treatment could smooth the progress of patient’s vascular status.

P12.01
MEASURING AORTIC DISTENSIBILITY WITH CMR USING CENTRAL PRESSURES ESTIMATED IN THE MAGNET: COMPARISON WITH CAROTID AND PERIPHERAL Pressures

A. Redheuil 1, 3, M. Bensalah 2, 3, N. Kachenoura 3, E. Bozec 1, 4, A. Descares 1, P. Boutouyrie 1, 4, E. Mousseaux 1

1 HEGP, University of Paris Descartes, Paris, France
2 Hoˆpital Ambroise Paré, Boulogne, France
3 INSERM U678, Paris, France
4 INSERM U970, Paris, France

Objective: Evaluate the feasibility of local aortic distensibility measurement using central pressure estimation in the magnet, simultaneous to aortic imaging with cardiovascular magnetic resonance (CMR).

Methods: We studied 49 asymptomatic subjects (26 men, age 44 ±18 years). Ascending aortic strain was determined by CMR using automated segmentation of SSFP cine acquisitions. Central pressures were estimated as: 1) carotid pressures using tonometry measured immediately after CMR; 2) estimated from brachial cuff pressure using Vicorder™ acquired simultaneously with aortic cine imaging in the magnet. Central pressures were used to calculate aortic distensibility defined as aortic strain over central pulse pressure (AAR-carotid using carotid pressure and AAD-vicorder using Vicorder) and the carotid augmentation index (AIX). Carotid-femoral pulse wave velocity (cfPWV) was measured using tonometry.

Results: Average ± SD systolic brachial, carotid and Vicorder pressures were respectively: 114±15, 105±13, 106±14 mmHg. We found a strong linear relationship between AAR-carotid and AAD-vicorder (r = 0.89, R² = 0.91, p < 0.001). The mean distensibility difference between the two methods was: -1.1±12 mmHg and variability 0.9%. Distensibilities measured using brachial pressures were higher than using either central pressures (Table). The correlations with age, AIX and cfPWV obtained using AAD-vicorder (respectively: r = -0.82, r = -0.62; r = -0.61; p < 0.001) were significantly higher than using carotid pressure measured using tonometry. All pressures measured by Complior SP, aortic pressures and AP were obtained using SphygmoCor ultrasonography.

Conclusions: Aortic distensibility may be measured by CMR using central pressures measured in the magnet, simultaneously with cine acquisitions. Resulting distensibilities are closely related to those using carotid pressures measured by tonometry outside the magnet and achieve higher estimated glomerular filtration rate (74 vs 84ml/min, p < 0.001), but only ascending trends (without statistical significance) were registered in men. Many these variables were correlated with AP, but in a multiple linear regression, time of hypertension was the only parameter associated with AP. Conclusion: Many clinical variables may contribute to an increased AP in hypertensive patients, and time of diagnosis seems to be important suggesting that intensive and early antihypertensive treatment could smooth the progress of patient’s vascular status.

P13.11
CLINICAL AND VASCULAR PARAMETERS CORRELATED WITH AUGMENTATION PRESSURE IN A BRAZILIAN HYPERTENSIVE POPULATION

State University of Rio de Janeiro, Rio de Janeiro, Brazil

Background: Augmentation pressure (AP) has been considered an absolute index that represents vascular stiffness.

Objective: To evaluate clinical and vascular parameters in a Brazilian population presenting hypertension and increased augmentation pressure.

Methods: A cross-sectional study was carried out to evaluate hypertensive patients, both genders, aged 30-75 years. Cardiovascular risk was estimated using SCORE by gender, age, systolic blood pressure, total cholesterol and smoking status. Carotid-femoral pulse wave velocity (cfPWV) was measured by Compilor SP, aortic pressures and AP were obtained using SphygmoCor device, and intima-media thickness (IMT) was measured by carotid ultrasonography.

Results: Subjects (n=129) were divided into two groups according to AP median (16mmHg). Individuals with increased AP were older (59 vs 51 years, p < 0.001) and presented higher SCORE (4,0 vs 2,5%, p < 0.05), pulse pressure (64 vs 48mmHg, p < 0.001), time of hypertension (16 vs 8 years, p < 0.001), total cholesterol (216 vs 193mg/dl, p < 0.01), cfPWV (10.9 vs 9.8m/s, p < 0.01), carotid intima-media thickness (0.87 vs 0.67mm, p < 0.05), and lower estimated glomerular filtration rate (74 vs 84ml/min, p < 0.01). All these variables were correlated with AP, but in a multiple linear regression, time of hypertension was the only parameter associated with AP.

Conclusion: Many clinical variables may contribute to an increased AP in hypertensive patients, and time of diagnosis seems to be important suggesting that intensive and early antihypertensive treatment could smooth the progress of patient’s vascular status.

Table: Average ascending aortic distensibilities according to central pressure measurement technique and age group

<table>
<thead>
<tr>
<th>Distensibilities, kPa⁻¹.10⁴</th>
<th>Age <50 years</th>
<th>Age≥50 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 26</td>
<td>n = 23</td>
</tr>
<tr>
<td>AD peripheral (Brachial)</td>
<td>65±29</td>
<td>24±13</td>
</tr>
<tr>
<td>AAD central Carotid</td>
<td>80±34</td>
<td>31±17</td>
</tr>
<tr>
<td>AAD central Vicorder</td>
<td>83±37</td>
<td>30±18</td>
</tr>
</tbody>
</table>