P10.10: THE INFLUENCE OF ANTIHYPERTENSIVE TREATMENT ON ARTERIAL STIFFNESS AND SELECTED MATRIX METALLOPROTEINASES PLASMA ACTIVITY

M.W. Rajzer, W. Wojciechowska, D. Fedak, K. Kawecka-Jaszcz


To link to this article: https://doi.org/10.1016/j.artres.2011.10.154

Published online: 14 December 2019
The aim of the study: Comparative investigation of mechanical characteristics of the stable and unstable plaques in a carotid artery.

Methods: In the main group (MGr) were studied 16 plaques with stenosis 70-90%, and control group (CGr) 33 plaques with stenosis 25-45%. Carotid ultrasound examinations (PHILIPS IU22) were performed for estimated structure and stenosis of plaques. The "healthy" wall stiffness (free from plaques -jlhw) and plaques zone stiffness (in adventitia -jladv and in plaques surface -jlpl) were estimated using echo-tracking method by ALOKA 7 in B/M mode ultrasound imaging.

Results: In the MGr majority of plaques had structure with hypoechogenic area (~50%) and calcification, third plaques had rough or ulcerated surface. In CGr dominated heterogeneous plaques with smooth surface. In both groups (jlhw) was significantly lower, than (jladv: MGr: 8,95±3,14 vs 22,73±10,43, CGr: 9,43±2,64 vs 14,45±6,7, p<0,001), (jlpl was significantly higher than (jlpl: MGr: 22,73±10,43 vs 7,7±5,04; CGr: 14,45±6,7 vs 11,69±6,84, p<0,001). Relative changes of plaques zone stiffness (100-jlpl/jladv) was significantly higher in the MGr (51,28±24,17% vs 26,93±21,45%, p<0,036).

Conclusions: Our results confirm presence the significant gradient of stiffness in junction place of healthy artery wall to plaque. In group with unstable plaques this gradient was significantly higher, that allows considering the possibility of the unstable plaques criteria developing by echo-tracking method.

P10.09

ANALYSIS OF A STOCHASTIC ANISOTROPIC FIBROUS CONSTITUTIVE LAW EFFECT ON THE HUMAN ARTERIAL PRESSURE

A. Eddahak-Ouni 1, I. Masson 2, F. Mohand-Kaci 2, M. Zidi 2

1 Arts et Métiers ParisTech (ENSAM-ESTP/IRC) - Institut de Recherche en Constructibilité, Cachan, France
2 Université Paris-Est Créteil, EAC CNRS 4396, Créteil, France

This research work deals with a stochastic approach using the entropy maximum principle to investigate the effect of parameters uncertainties on the arterial pressure. Motivated by a composite constitutive law with collagen fiber families [1], a set of uncertain parameters describing the mechanical behavior of the artery wall was considered. On the light of the available information, probability density functions were considered for the random variables governing the constitutive law in order to describe the dispersion of mechanical model response. Numerous realizations were performed according to the probability distributions and the corresponding arterial pressure results were compared to human non invasive clinical data recorded over a mean cardiac cycle. To prove the convergence of the probabilistic model, simulations of Monte Carlo were performed [2]. The different realizations were useful to define a reliable confidence region in which the probability to have a realization is equal to 95%. The obtained results demonstrate that the error in the estimation of the arterial pressure can reach 35% when the estimation of model parameters is subjected to an uncertainty ratio of 5%. Eventually, a sensitivity analysis was performed to discuss the influence of every uncertain parameter on the arterial pressure to identify the main parameters which contribute significantly in the constitutive law for a better understanding and characterization of the arterial wall mechanical behavior.


P10.10

THE INFLUENCE OF ANTHYPERTENSIVE TREATMENT ON ARTERIAL STIFFNESS AND SELECTED MATRIX METALLOPROTEINASES PLASMA ACTIVITY

M. W. Rajzer 1, W. Wojciechowska 1, D. Fedak 2, K. Kawecka-Jaszcz 1

1 1st Dept. of Cardiology and Hypertension, Jagiellonian University, Krakow, Poland
2 Chair of Biochemistry, Jagiellonian University Medical College, Krakow, Poland

The aim of the study was to compare the effects of 5 selected drugs on arterial stiffness and matrix metalloproteinases (MMPs) plasma activity in patients with essential arterial hypertension (HT). Material and methods: 95 pts. with HT stage 1 and 2, (N=19 in each treatment group) were treated for 6 months by: quinapril 20-40 mg/d (group-1), amiodipine 5-10mg/d (group-2), hydrochlorothiazide 12,5-25mg/d (group-3), losartan 50-100 mg/d (group-4), bisoprolol 5-10 mg/d (group-5). Before and then after 1,3 and 6 months of treatment office blood pressure (BP) was measured using Omron M5-I device. Carotid femoral pulse wave velocity (PWV) was measured using 3 devices CompiloR®, Sphygmocor® and Arteriograph™. Plasma concentration of (MMPs): MMP1, MMP2, MMP3, MMP9 and MMPs tissue inhibitor (TIMP1) was measured twice i.e. before and after 6 months of treatment using micro-ELISA method. Results: At the baseline no differences between groups were observed in BP, PWV and MMPs activity. ANOVA for repeated measurements revealed for all groups during treatment significant decrease in systolic BP (p<0,001), diastolic BP (p<0,001), PWV (p<0,001), MMP2 (p<0,05) and MMP3 (p<0,001) and increase of TIMP1 (p<0,001) plasma concentration. No between treatment groups differences were observed in above mentioned effects. Decrease of PWV was in significant relation to its baseline value (p: 0.498, p<0.00041), decrease of MMP3 (B: 0.211, p<0.0021 and increase of TIMP1 (B: 0.263, p: 0.00052). Conclusion: Antihypertensive treatment reduces arterial stiffness proportionally to its baseline value and independently of the used drug. The reduction of arterial stiffness depends on decrease of extracellular matrix degradation.

P10.11

THE EFFECT OF WALL MOTION ON THE HAEMODYNAMICS OF MIDDLE CEREBRAL ARTERY (MCA) ANEURYSM

T. S. Safavi, M. Nabaee, N. Fatourae

Biological Fluid Mechanics Research Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran, Islamic Republic of

External forces, accelerations and displacements, due to sudden motions of head or traumas, may affect the haemodynamics and flow patterns in a cerebral aneurysm. Despite several studies on blood flow dynamics and arterial wall mechanics in intracranial aneurysms, limited investigations considered the external forces or motion of the arterial wall. Therefore in this study, we have numerically analyzed the effects of wall movement on cerebral aneurysms with the fluid and structure interaction (FSI) theories. A 3Dimensional Model of Middle Cerebral Artery (MCA) aneurysm (geometry adopted from R. Torii et al., Int. J. Numerical Methods in Fluids, 54:995–1009, 2007) was constructed and exposed to a realistic head motion in sagital plane. Blood was considered as a homogeneous, incompressible