6.4: CARDIOTROPHIN-1 INDUCES STRUCTURAL AND MECHANICAL CHANGES IN AORTA


To link to this article: https://doi.org/10.1016/j.artres.2011.10.228

Published online: 14 December 2019
Oxidative Stress and Inflammation: Implication in Endothelial Dysfunction and Cardiovascular Aging on Murine Models

S. Baron 1,2*, T. Bedardia 1,4, M. M. Strelcyn 1, C. H. Cottart 1,2, F. Vibert 1, G. Renaut 1, B. Saubamea 4, E. Weissieres 1, D. Henrion 5, J. L. Beaudeux 1,2, V. Nivet-Antoine 1,6

1Groupe VIVA, EA4466, Universite Paris Descartes, Paris, France
2APHP, Hopital Pitie Salpetriere-Charles Foix, Service de biochimie-hematologie Charles Foix, Ivry sur seine, France
3PIPA, Institut Cochin, Universite Paris Descartes, Paris, France
4SCICM, Universite Paris Descartes, Paris, France
5Laboratoire CNRS-INSERM 771 Faculte de medecine, Angers, France
6APHP, Laboratoire de Biochimie, Hopital European Georges Pompidou, Paris, France

The aim of the study was to characterize cardiovascular aging with functional (Doppler) and molecular (RT-qPCR and immunohistochemistry quantifications) approaches using three murine models. Molecular studies on aorta (AO) and mesenteric arteries (MA) were used to explore the role of oxidative stress and inflammation. Time-induced aging model corresponded to 25 months-old C57BI/6J mice feed and aortic wave reflection and forearm vasoconstrictor responsiveness to exogenous NE in women (Figure 2). Our data suggest that: 1) aortic wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG)) in both sexes. However, the increase in wave reflection tended to be greater (P < 0.05) and wave reflection amplitude (aortic augmented pressure (AG))...