P7.11: HIGH ANKLE-BRACHIAL INDEX IS ASSOCIATED WITH INCREASED AORTIC PULSE WAVE VELOCITY: THE CZECH POST-MONICA STUDY


To link to this article: https://doi.org/10.1016/j.artres.2009.10.104

Published online: 14 December 2019
Arterial stiffness is increased in patients with ischemic systolic failure compared with ischemic group (6.8 (6.4; 7.8) vs. 9.0 (7.5; 10.0) m/sec; p < 0.005). In the stepwise multiple regression analysis low and high ABI were independent predictors of increased aPWV together with age, central systolic blood pressure, heart rate, BMI, and hypertension. Conclusion: This is the first study showing increased aortic PWV in patients with high ABI pointing to increased cardiovascular risk in this group.

P7.13 THE P22PHOX -640A/G POLYMORPHISM OF NADPH OXIDASE ADVERSELY AFFECTS ENDOTHELIN LEVELS BUT NOT PERIPHERAL AND CENTRAL PRESSURES IN HEALTHY, YOUNG, NORMOTENSIVE INDIVIDUALS

P. Xaplanteris, C. Vlachopoulos, C. Vassiliadou, K. Baou, I. Dima, D. Kardara, C. Stefanadis. 1st Department of Cardiology, Hippokrateion Hospital, Athens Medical School, Athens, Greece

Purpose: The NADPH oxidase system produces superoxide in the vessel wall and its -640A/G polymorphism is associated with coronary artery disease incidence in young individuals. We investigated the role of this polymorphism on peripheral/aortic pressures (PP, aPoP), and endothelin-1 (ET-1) levels, in young normotensive individuals.

Methods: 153 healthy normotensives were studied (95 males, age 41 years). The -640A/G polymorphism in the p22phox promoter was typed by DraII digestion of specific polymerase chain reaction products amplified from genomic DNA. The AA, AG and GG genotypes were determined. PP were measured by a sphygmomanometer; aPoP were measured using a validated device. ET-1 levels were determined by ELISA. Comparisons were performed using the ANOVA for multiple comparisons followed by Bonferroni correction.

Results: The prevalence of AA, AG and GG genotypes was 26.8%, 49.2% and 24.2%. Compared to AG subjects, AA and GG subjects had significantly higher levels of ET-1 (A: 1.69 ± 3.50 vs AA: 4.35 ± 6.62 vs GG: 2.70 ± 5.28 pg/ml; p < 0.05). However, neither PPs nor aPoPs differ; systolic PP (AG: 113.8 ± 13.2 vs AA: 116.9 ± 11.5 vs GG: 116.4 ± 16.1 mmHg, p = NS), diastolic PP (AG: 70.5 ± 11.2 vs AA: 71.7 ± 9.2 vs GG: 71.1 ± 12.4 mmHg, p = NS), systolic aPoP (AG: 103.9 ± 12.8 vs AA: 105.1 ± 11.3 vs GG: 105.9 ± 16 mmHg, p = NS), diastolic aPoP (AG: 71.5 ± 11.2 vs AA: 72.7 ± 9.3 vs GG: 72.2 ± 12.6 mmHg, p = NS).

Conclusion: The -640A/G polymorphism of the p22phox subunit of NADPH oxidase is associated with levels of ET-1, but neither with PP nor with aPoP in young, normotensive individuals. Heterozygosity is associated with lower ET-1 levels.

Epidemiology 4

P8.01 PREDICTORS OF AORTIC STIFFENING IN ELDERLY SUBJECTS: RESULTS OF A NINE-YEAR FOLLOW-UP

J. Seidlerová, J. Filipovský, O. Mayer, Jr., M. Dolejšová. Internal Department II, Faculty of Medicine in Pilsen, Pilsen, Czech Republic

Objective: To investigate predictors of increase in aortic pulse wave velocity (aPWV) in elderly subjects free from overt cardiovascular disease.

Design and Method: The present study included 90 lecture attendees ("university of 3rd age") who were examined at baseline and after a median follow-up of 9.5 years, including the aPWV measurement using Sphygmocor. At baseline, they were aged 66.9 ± 5.1 years, 80.0% were women, 37.8% of subjects had arterial hypertension, 5.6% diabetes mellitus, and 82.2% hyperlipidemia. We used multiple linear regression analyses to assess predictors of change in aPoP. As independent covariates we considered: sex, age, body mass index, mean arterial pressure (MAP), heart rate, fasting glucose, total cholesterol, smoking, alcohol intake and observer.

Results: The aPWV increased from 9.4 to 10.3 m/s; P = 0.022. While accounting for covariates, aPWV increased significantly with three factors: a 1-standard deviation change in heart rate (8.5 bpm), in MAP (12.4 mm Hg) and in fasting glucose (0.93 mmol/l) were associated with increased aPWV amounting to 0.76 m/s (95% CI: 0.23 to 1.30; P = 0.0061), 0.71 m/s (95% CI: 0.20 to 1.23; P = 0.0079) and 0.57 m/s (95% CI: 0.08 to 1.07; P = 0.024), respectively.

Conclusions: In elderly subjects without manifest cardiovascular disease, mechanical load, as demonstrated by the positive association with heart rate and MAP, plays a major role in the aortic stiffening. Among metabolic factors, glucose concentration but not lipid parameters is associated with increase in aortic stiffness, possibly via glycation of connective tissue within arterial wall.