P7.02: BEYOND BLOOD PRESSURE: IS ARTERIAL STIFFNESS MEASUREMENT THE FUTURE FOR PRIMARY CARE? A PILOT STUDY


To link to this article: https://doi.org/10.1016/j.artres.2009.10.095

Published online: 14 December 2019
INCREASED CAROTID PLAQUE OCCURRENCE IN MEN WITH THE FIBRILLIN-1 2-3 GENOTYPE

R. DeBasso 1, B. Hedblad 2, J. Carlson 3, G. Berglund 4, T. Länne 5
1Department of Clinical Physiology, Jonköping Hospital, Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Jonköping, Linköping, Sweden
2Department of Clinical Sciences, Epidemiological Research Group, University Hospital Malmö, Lund University, Malmö, Sweden
3Department of Clinical Chemistry, University Hospital Malmö, Lund University, Lund, Sweden
4Department of Clinical Sciences, Internal Medicine Research Group, University Hospital Malmö, Lund University, Malmö, Sweden
5Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden

Background: Fibrillin-1 is an important constituent of the vascular wall and earlier studies have indicated an effect of the fibrillin-1 2-3 genotype on blood pressure as well as aortic stiffness. The aim was to determine if the Fibrillin-1 2-3 genotype is associated with increased cardiovascular morbidity/mortality in middle-aged individuals.

Methods: The fibrillin-1 genotype was characterized by PCR in 5765 individuals (3,424 men, 3,341 women 45-69 yrs) recruited from the Cardiovascular Cohort in Malmö Diet and Cancer-study. The intima media thickness (IMT) of the common carotid artery (CCA) was visualised by B-mode ultrasound. The follow up on the number of cardiovascular events (myocardial infarction and stroke) as well as all cause mortality was monitored during 1991 to 2001.

Results: The most common genotypes were 2-2, 2-3 and 2-4 which accounted for 92.2% (n = 5317) of the individuals. There were no differences between the three genotypes regarding age, blood pressures, smoking, glucose, lipids, CCA diameter and IMT. Regarding the occurrence of plaque in the CCA the men with the 2-3 genotype had more plaque than the 2-2 and 2-4 genotypes, (54% vs 46% and 50%, p < .007). The follow up (mean 8.55 yrs) of cardiovascular events and mortality did however not differ between the genotypes.

Conclusions: The increased plaque occurrence in the carotid artery of middle-aged men with fibrillin-1 2-3 genotype indicates a pathologic arterial wall remodelling with a more pronounced atherosclerotic burden. The effect of the 2-3 genotype on cardiovascular events and mortality seems however to be minor.

Epidemiology 3

P7.01
CAROTID ATHEROSCLEROSIS AND ENDOTHELIAL DISFUNCTION IN YOUNG AND MIDDLE-AGED MEN WITH CORONARY ARTERY DISEASE

Cardiology Research Centre, Moscow, Russian Federation

Objective: To determine whether the structural status of carotid arteries and abnormal flow-mediated dilatation (FMD) in the brachial artery identify young and middle-aged men with coronary artery disease (CAD).

Methods: A total of 78 men aged 28 to 50 (mean 43 ± 5) years underwent carotid ultrasound and endothelial function measurements. Angiographically documented CAD was present in 49 patients. Those with arterial hypertension, diabetes mellitus or marked hypercholesterolemia (level of LDL cholesterol >4.9 mmol/l) were excluded from the study.

Results: Patients with CAD more often were smokers, had a history of premature CAD and low level of HDL cholesterol. The mean carotid intima-media thickness (IMT) was 0.88 ± 0.23 mm for patients with CAD and 0.76 ± 0.18 mm for patients without CAD (p = 0.01). The presence of a carotid IMT >0.9 mm was not significantly differing in both groups. Carotid plaques were present in 45 (91.8%) patients with CAD and in 8 (27.6%) patients without CAD (p < 0.001). Patients with CAD more often had multiple plaques (86.7% vs 13.8%, p < 0.001). Mean brachial artery FMD was less in patients with CAD (4.5 ± 2.8% vs 5.8 ± 2.2%, p = 0.03), but the occurrence of abnormal FMD was the same in both groups.

Conclusion: The presence of carotid plaques in young and middle-aged men is associated with the risk of occurrence of CAD and may be considered as a more powerful surrogate marker for coronary atherosclerosis than the presence of impaired brachial artery FMD and increase in carotid IMT.

P7.02
BEYOND BLOOD PRESSURE: IS ARTERIAL STIFFNESS MEASUREMENT THE FUTURE FOR PRIMARY CARE? A PILOT STUDY

1Department of Medicine, Leighton Hospital, Crewe, United Kingdom
2Cardiovascular and Endocrine Sciences, University of Manchester, Manchester, United Kingdom

Background
In primary care, much effort goes into risk factor management. Early recognition of vascular dysfunction in patients should inform intervention to reduce vascular risk. Very few studies have looked at the application of augmentation index (AI) measurement in primary care, particularly in those with impaired glucose handling (IGH) and type 2 diabetes, who have a higher than usual risk of cardiovascular disease.

Arterial stiffness assessed via AI, with much less variation than BP, increases inerxorably with age and is a potential marker for cardiovascular risk. AI is measured by application tonometry and is a non-invasive measure of arterial stiffness.

Scientific aims
The main aims are to describe the profile of augmentation index (AI) in patients at elevated cardiometabolic risk. Furthermore to assess its relation to central BP, body mass index (BMI) and HbA1c (type 2 diabetes only) in the age-matched normoglycaemic, IGH and type 2 diabetes participants.

Plan of investigation for pilot study
Using the established primary care register for individuals with IGH and type 2 diabetes in Central and Eastern Cheshire, age-matched consecutive attendees (between June and August 2009) at GP clinics in the area will undergo routine investigations. Central blood pressure and AI will be determined (Omrон HEM-9000AI).

Potential impact of pilot study
To determine whether AI as a predictor of cardiovascular risk may be used to identify at risk individuals for more aggressive management.

Evidence to support the use in Primary Care of AI and central BP measurement in patients with IGH and type 2 diabetes. To help GPs to understand the variation in AI by glucose tolerance status and to determine whether glycaemic control in type 2 diabetes is related to AI. In the next stage we will monitor prospectively the impact of targeted intensive management over time.

P7.03
MARATHON RUNNERS HAVE INCREASED AORTIC STIFFNESS

Hippokration General Hospital of Athens, Athens, Greece

Purpose: It is well known that regular moderate aerobic exercise has a beneficial effect on cardiovascular risk, although the impact of long-term intense aerobic training has not been defined. Aortic stiffness and wave reflections are independent predictors of cardiovascular risk. In this study we assessed the chronic effect of intense endurance training on the elastic properties of the large arteries.

Methods: The study population consisted of 49 healthy (mean age: 37 ± 5yrs), regularly trained (5.8 ± 3.6 hours/week for 11.6 ± 9.1 years) marathon runners (mean age: 38.8 ± 9yrs) and 46 controls matched for classical risk factors. Aortic stiffness was evaluated with carotid-femoral pulse wave velocity (PWV) and wave reflections with augmentation index (AIx) of the aortic pressure waveform.

Results: Marathon runners had significantly higher systolic pressure (aortic and brachial) (113 ± 15 vs. 102 ± 11, P < 0.01 and 126 ± 15 vs. 115 ± 12, P < 0.01, respectively) compared to controls. Aortic and brachial diastolic pressure- (79 ± 10 vs.72 ± 9, P < 0.01 and 78 ± 10 vs.71 ± 9, P < 0.01, respectively) and mean pressure (94 ± 12 vs. 86 ± 10, P < 0.01) were also increased compared to controls. PWV was increased in athletes compared to controls (6.9 ± 1 vs. 6.3 ± 1, P < 0.01), indicating increased aortic stiffness. AIx corrected for heart rate (8.2 ± 12.2 vs. 10.3 ± 9.5, P = NS) did not differ among the two groups. Years of exercise were associated with aortic pulse pressure (r = 0.304, P = 0.045) and AIx (r = 0.388, P = 0.009) in athletes.