P10.03: ENDOTHELIUM-SPECIFIC CALCIUM-ACTIVATED POTASSIUM CHANNELS: TARGETS FOR ALDOSTERONE

V. Griol-Charhbili, A. Nguyen Dinh Cat, G. Palais, L. Loufrani, D. Henrion, N. Farman, F. Jaisser


To link to this article: https://doi.org/10.1016/j.artres.2009.10.134

Published online: 14 December 2019
P10.01
INVOLVEMENT OF CALCIUM-CALMODULIN DEPENDENT PROTEIN KINASE II ON ENDOTHELIN RECEPTOR EXPRESSION IN CEREBRAL ARTERIES OF RAT
R. Waldsee, H. Ahnstedt, S. Eftekhari, L. Edvinsson.
Clinical Science, Lund, Sweden

Background. Experimental cerebral ischemia and organ culture of cerebral arteries result in enhanced expression of endothelin ET receptor in smooth muscle cells. The present study was designed to evaluate the involvement of calcium-calmodulin dependent protein kinase (CAMK) on the expression of endothelin receptors.

Methods. Rat basilar arteries were incubated for 24 hours with and without the CAMK inhibitor, KN93, or the ERK1/2 inhibitor, U0126. The contractile responses to endothelin-1 (ET-1; ET receptor agonist) and sarafotoxin 6c (S6c; ETB receptor agonist) were studied using a sensitive myograph. The mRNA levels of ETa and ETb receptors, and of CAMKII were determined by real-time polymerase chain reaction (PCR) while the protein level was evaluated by immunohistochemistry and western blot.

Results. The mRNA levels of CAMKII and of the ETb receptor were increased during organ culture but not for ETa receptor. This effect was abolished by co-incubation with KN93 or U0126. In functional studies, both inhibitors attenuated the S6c and potassium induced contractions, and KN93 decreased the ET-1 induced response. This was confirmed at the protein level by immunohistochemistry where the endothelin receptors were found co-localised with CAMKII. Phosphorylation of extracellular signal-regulated kinase pERK1/2 and CAMKII was measured by immunohistochemistry and western blot. Incubation of arteries with KN93 decreased the protein levels of pERK1/2 and CAMKII while U0126 has no effect on CAMKII.

Conclusion. Our results show that the CAMK II is involved in the endothelin receptor regulation and interacts with the MEK/ERK1/2 pathway, resulting in enhanced receptors expression in rat cerebral arteries.

P10.02
EFFECT OF INTEGRIN-EXTRACELLULAR MATRIX INTERACTIONS ON SMALL ARTERY STRUCTURE AND MECHANICS DURING HYPERTENSION AND AGING
Cardiovascular Research group, University of Manchester, Manchester, United Kingdom

An age-related increase in systolic blood pressure and similarities in the consequences of hypertension and aging on arterial structure/mechanics have been reported, particularly in larger arteries. As the structural/mechanical properties of smaller resistance vessels in the context of advancing physiological age and the mechanisms underlying these parameters are less well defined, we studied the effect of disintegrin-treatment (kistrin, or echistatin), ex-vivo, on mesenteric artery structure and mechanics, using wire-myography, in 8 week-old (young), 15 week-old (adult) and >1 year-old (old) spontaneously hypertensive (SHR) and Wistar-Kyoto rats (WKYs).

Vascular integrin αV and α5 expression were also quantified. Initial narrowing of the lumen by inward eutrophic remodelling, in arteries from young and adult SHRs, was superseded by expansion of the lumen as a result of outward hypertrophic remodelling in old SHRs. Vascular stiffness was increased in young SHRs versus WKYs but was similar in adult and old SHRs versus WKYs, despite increased integrin αV and α5 expression in these latter two groups. Disintegrin-treatment of arteries did not alter structure or mechanics in SHRs. Aging in WKYs was associated with hypertrophic remodelling of mesenteric arteries which was independent of integrin expression and associated with no change in vascular stiffness. In WKYs at all ages, vascular structure remained unaltered by disintegrin-treatment; however, stiffness was significantly reduced with echistatin-treatment (P<0.05), suggesting that integrin-ECM interactions contribute towards passive stiffness of WKY arteries. Further insight into the influence of integrin-ECM interactions on vascular structure/mechanics will contribute towards a better understanding of hypertension and age-related cardiovascular complications.

P10.03
ENDOTHELium-SPECIFIC CALCIum-ACtivated POTASSIUM CHANNELS: TARGETS FOR ALDOSTERONE
V. Griol-Charhbili 1, A. Nguyen Dinh Cat 3, G. Palais 1, L. Loufrani 2, D. Henrion 2, N. Farman 1, F. Jaissier 1.
1UB72, Paris, France
2UMR CNRS 6188, Angers, France
3University of Manchester, Manchester, United Kingdom

To define the vascular role of the mineralocorticoid receptor (MR) in cardiovascular pathophysiology, we generated a conditional transgenic mouse model with MR overexpression in the endothelium. We previously described increase sensitivity to several vasoconstrictors in mesenteric arteries such as in aorta of mice over-expressing the MR in the endothelium (MR-EC) in presence of a normal relaxation to vasodilators. In vivo, blood pressure (BP) was increased in awake MR-EC mice, as compared to the controls (CT) (tail-cuff method).

We have investigated the role of the small (SKCa), and the intermediate (IKCa) and the big (BKCa) conductance potassium channels in vascular function. In infra-renal aorta, endothelial SKCa and IKCa channel blockade (Apamin 1 µM + TRAM-34 1 µM) unmasked an impaired relaxation to acetylcholine in MR-EC mice as compared to controls. Inhibition of the smooth muscle specific BKCa channel with Iberiotoxin (0.1 µM) blunted the higher phenylephrin-induced contractile response observed in MR-EC as compared to CT. These pharmacological data suggest that endothelial MR overexpression is associated with an increased activity of EDHF-mediating endothelial Ca-activated K channels and a functional decrease of the smooth-muscle BKCa channel activity. Western blot analyses of the protein expression levels of these channel subunits were performed. None of them showed significant modulation, suggesting that channel activity, rather than expression level, is affected in this model. MR activation specifically in endothelial cells is therefore associated with increased BP and altered vascular reactivity, in absence of renal collecting duct mediated MR effects. This may be related to ion channels remodeling.

P10.04
INFLUENCE OF 1,25(OH)2D3 (VITAMIN D) ON RESISTANCE ARTERY CONTRACTILITY
G. Goudet 2, M. Rezai 1, J.K. Cruickshank 1.
1University of Manchester, Manchester, United Kingdom
2Inserm visiting student scholar, Universite de Nancy, Nancy, France

Low serum vitamin D is linked with higher vascular risk. It is unclear how.

Low serum vitamin D is linked with higher vascular risk. It is unclear how.