Economic assessment of the costs of developing corporate sports and physical education based on a fuzzy-multiple approach

Glazkova Svetlana Sergeevna
Associate Professor, Department of Economics and Management, Ozersk Technological Institute (branch) of the National Research Nuclear University
glazss@yandex.ru

Babina Yulia Sergeevna
Associate Professor, Department of Economics and Finance, St. Petersburg Institute of Hospitality Management
giuly@yandex.ru

Dovgaliuk Ilyana Mikhailovna
Associate Professor, Department of Tourism and Social and Cultural Service, Institute of Sport, Tourism and Service
South Ural State University
dovgaliukim@susu.ru

Abstract The aim of the study is to develop the economic assessment of corporate sports and physical education. Materials and methods. Based on the reports of the Contact Plus company (St. Petersburg) on the budget for corporate sports and physical education and indicators of working time losses for 2014-2018, the reduction in working time losses and the effectiveness of measures were calculated. Results. Indicators for evaluating cost-effectiveness of developing corporate sports and physical education were determined and their effectiveness was estimated using fuzzy logic. Conclusion. An approach to assessing economic efficiency has been developed.

Keywords: corporate sports and physical education effectiveness, economic assessment, working time losses, fuzzy multiple assessment.

I. INTRODUCTION

One of the factors of increasing labor productivity and profits of an organization is corporate sport and physical education, that is, “a set of activities related to the physical activity of employees conducted under the auspices and patronage of an enterprise (corporation)” [4,5]. Thanks to the development of this factor, the enterprise achieves a reduction in losses from seasonal and other illnesses, low working capacity, absence due to alcohol consumption, loss of working time due to smoking, etc.

To eliminate these losses and increase profits, enterprises are implementing activities in corporate physical education and sports, such as corporate fitness and corporate championships in various sports for staff and their families that promote a healthy lifestyle without smoking and alcohol.

Undoubtedly, these activities require funding. Therefore, the problem of evaluating the effectiveness of these measures arises. There is no indicator of economic efficiency in the development of corporate sports and physical education in modern scientific literature. In this research, an attempt is made to develop an approach to its assessment.

II. MATERIALS AND METHODS

The study was conducted on the premises of the Contact Plus company. For analysis, the data for the period 2014-2018 were used.

As a performance indicator, the ratio of the annual cost reduction due to loss of working time (Δ C) to the company's annual budget for the development of corporate sports and physical education (Bcs) was used:

\[\mathcal{E} = \frac{\Delta C}{Bcs} \] (1).

The annual losses of the company are estimated based on the data from reports on the use of working time. Sick leave and absent days are taken into account, as the reasons for them are mainly connected with uncontrolled drinking after work and low level of labor discipline. The annual loss reduction is calculated as the difference between the losses of the current and previous periods. To assess the costs of the enterprise from loss of working time, the volumetric indicator of the loss of working time in hours is multiplied by the average hourly output of one employee of the enterprise in rubles.

To assess the level of effectiveness, a fuzzy multiple approach was used.

III. RESULTS AND DISCUSSION

The Contact Plus company, recognizing the need for developing corporate sports and physical education, annually increased the budget in this area (Table I).

<p>| TABLE I. ANNUAL BUDGET FOR THE DEVELOPMENT OF CORPORATE SPORTS AND PHYSICAL EDUCATION FOR 2014-2018 |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renovating sports facilities and equipment, thousand rubles</td>
<td>2500</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Corporate championships (football, volleyball), thousand rubles</td>
<td>-</td>
<td>300</td>
<td>500</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>Subscription to the swimming pool for employees, thousand rubles</td>
<td>500</td>
<td>1500</td>
<td>2500</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Social advertisement against smoking and alcohol drinking, thousand rubles</td>
<td>500</td>
<td>500</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Remuneration of staff, thousand rubles</td>
<td>120</td>
<td>360</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Other, thousand rubles</td>
<td>-</td>
<td>200</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Total</td>
<td>3620</td>
<td>3060</td>
<td>4600</td>
<td>5100</td>
<td>5600</td>
</tr>
</tbody>
</table>

Copyright © 2019, the Authors. Published by Atlantis Press. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
During the study, there was a tendency to reduce the loss of working time due to the reduction of sick leave and absent days (Table II). This trend is due to the reduction of diseases as a result of health improvement. In addition, physical education and sports, as well as the promotion of a healthy lifestyle, have led to a reduction in alcohol consumption after work. A person engaged in sports, seeks to lead a healthy lifestyle, giving up bad habits or reducing the use of tobacco and alcohol. This results in a reduction in losses of working time caused by smoke breaks or fatigue.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Period</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total absent days, man-day</td>
<td></td>
<td>65</td>
<td>62</td>
<td>55</td>
<td>52</td>
<td>49</td>
</tr>
<tr>
<td>Sick leave days, man-day</td>
<td></td>
<td>19.2</td>
<td>18.7</td>
<td>17.4</td>
<td>15.3</td>
<td>14.8</td>
</tr>
<tr>
<td>Absent days, man-day</td>
<td></td>
<td>6.1</td>
<td>5.9</td>
<td>6</td>
<td>4.8</td>
<td>4.4</td>
</tr>
<tr>
<td>Average working day, hours</td>
<td></td>
<td>7.98</td>
<td>7.97</td>
<td>7.98</td>
<td>7.99</td>
<td>7.97</td>
</tr>
<tr>
<td>Intra-shift losses of working time, man-hour</td>
<td>1.12</td>
<td>0.83</td>
<td>0.76</td>
<td>0.52</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Non-production losses*, man-hour</td>
<td></td>
<td>1.05</td>
<td>0.79</td>
<td>0.71</td>
<td>0.46</td>
<td>0.25</td>
</tr>
<tr>
<td>Total (Line 2+ line 3)* line 4+ line 6</td>
<td></td>
<td>202.94</td>
<td>196.85</td>
<td>187.44</td>
<td>145.08</td>
<td>113.42</td>
</tr>
<tr>
<td>Average hourly output of the employee, rubles per hour</td>
<td>1509.7</td>
<td>1625.3</td>
<td>1689.2</td>
<td>1812.1</td>
<td>1901.9</td>
<td></td>
</tr>
<tr>
<td>Average headcount, persons</td>
<td></td>
<td>498</td>
<td>516</td>
<td>505</td>
<td>531</td>
<td>523</td>
</tr>
<tr>
<td>Total, thousand rubles</td>
<td></td>
<td>152579.5</td>
<td>165090.8</td>
<td>159896.6</td>
<td>139598.6</td>
<td>112822.1</td>
</tr>
<tr>
<td>Loss reduction, thousand rubles</td>
<td></td>
<td>-</td>
<td>12511.37</td>
<td>5194.23</td>
<td>20297.99</td>
<td>26776.52</td>
</tr>
<tr>
<td>Loss reduction, %</td>
<td></td>
<td>-</td>
<td>-8.20</td>
<td>3.15</td>
<td>12.69</td>
<td>19.18</td>
</tr>
</tbody>
</table>

* Non-production losses include the time during which the employee does not fulfill his duties - breaks, unplanned rest, etc.

The reduction in losses of working time led to a reduction in possible losses in output volumes in monetary terms. This is due to the fact that losses of working time lead to under-production. Therefore, the smaller these losses, the greater the gross output of the enterprise. It is obvious that the company annually reduces potential losses. This fact allows us to talk about an increase in the cost-effectiveness of the development of corporate sports and physical education (Table III).

Performance indicators show how many times the potential savings from reduced working time losses exceed the costs of corporate sports and physical education. In 2015, there was an increase in losses compared to 2014, so the calculation of the efficiency indicator is inappropriate. In general, there is a positive trend. But the question is how high or low this indicator is. For this purpose, the fuzzy multiple approach was used.

The information support system is considered as effective when \(\mathcal{E} \), estimated by (1), is greater than a certain level \(G = 0 \).

This formula will allow evaluating the cost-effectiveness of the development of corporate sports and physical education, using the information available to the company. The data obtained allow us to characterize the feasibility of financing such events.

Since there is no assessment methodology that allows to determine the most reliable way of financing the development of corporate sports and physical education, a fuzzy decision-making model will be used.

If all parameters in (1) have a “fuzziness”, that is, their planned value is unknown, then fuzzy numbers are appropriate as the source data. To convert formula (1) to a form suitable for using fuzzy source data, the segmented method was used. For each fuzzy number in the structure of the source data, confidence intervals are obtained. For each fuzzy number in the structure of the source data, confidence intervals are obtained \([\Delta C_1, \Delta C_2], [B_{cs1}, B_{cs2}], [G_1, G_2] = [500, 10000], [G_1, G_2] = [10, 100] \).

Given an acceptable level of discretization with respect to \(\alpha \) on the membership interval \([0, 1]\), the resulting fuzzy number can be reconstructed by approximating its membership function \(\mu \mathcal{E} \) to the broken curve by interval points.

Financing corporate sports and physical education will be considered effective when \(\mathcal{E} \), estimated by (2), is greater than a certain level \(G = 0 \).

Since the basic operations with fuzzy numbers are reduced to operations with their confidence intervals, and operations with intervals are expressed through operations with real numbers - the boundaries of the intervals, for a given level \(\alpha \), by substituting the corresponding boundaries of the intervals in (2), we obtain:

\[
\left[\mathcal{E}_{cs1}, \mathcal{E}_{cs2} \right] = \frac{\Delta C_1}{[\Delta C_1, \Delta C_2]} \frac{\Delta C_2}{[B_{cs1}, B_{cs2}]} \quad \text{(2)}
\]

For each fuzzy number in the structure of the source data, confidence intervals are obtained \([\Delta C_1, \Delta C_2] = [-10000, 10000], [B_{cs1}, B_{cs2}] = [500, 10000], [G_1, G_2] = [-10, 100] \).

Given an acceptable level of discretization with respect to \(\alpha \) on the membership interval \([0, 1]\), the resulting fuzzy number can be reconstructed by approximating its membership function \(\mu \mathcal{E} \) to the broken curve by interval points.

Financing corporate sports and physical education will be considered effective when \(\mathcal{E} \), estimated by (2), is greater than a certain level \(G = 0 \).

Since the basic operations with fuzzy numbers are reduced to operations with their confidence intervals, and operations with intervals are expressed through operations with real numbers - the boundaries of the intervals, for a given level \(\alpha \), by substituting the corresponding boundaries of the intervals in (2), we obtain:
Given an acceptable level of discretization in α on the membership interval $[0, 1]$, the resulting fuzzy number \mathcal{E} can be constructed. To do this, we bring \mathcal{E} to a triangular form, limiting ourselves to calculations of fuzzy numbers of the source data using significant points.

Figure 1. \mathcal{E} and G membership functions

Figure 1 shows the membership function \mathcal{E} and the criteria value G. The intersection point of these two membership functions is the point with ordinate α_1. We choose an arbitrary membership level α and define the corresponding intervals $[\mathcal{E}_1, \mathcal{E}_2]$ and $[G_1, G_2]$. When $\alpha > \alpha_1$, $\mathcal{E}_1 > G_2$, the intervals do not intersect, and the confidence that the project is effective is one hundred percent, therefore, the degree of risk of inefficiency of the information support system is zero. Level α_1 can be called the upper limit of the risk zone. At $0 \leq \alpha \leq \alpha_1$, the intervals intersect.

Figure 2. Phase space (\mathcal{E}, G)

Figure 2 shows the inefficiency area bounded by the straight lines $G = G_1, G = G_2, \mathcal{E} = \mathcal{E}_1, \mathcal{E} = \mathcal{E}_2$ and the bisector of the coordinate angle $G = \mathcal{E}$.

The mutual relations of the parameters G_1, G_2 and $\mathcal{E}_1, \mathcal{E}_2$ provide the following calculation for the area of the flat figure:

\[
[\mathcal{E}_1, \mathcal{E}_2] = \left[\frac{-13000}{10000}; \frac{50000}{500} \right] = [-1.3; 100]
\]

Since all implementations (\mathcal{E}, G) for a given membership level α are equally possible, the degree of inefficiency of the system $\varphi(\alpha)$ is the geometric probability that a point (\mathcal{E}, G) enters the inefficiency area:

\[
\varphi(\alpha) = \frac{S_\alpha}{(G_2 - G_1)(\mathcal{E}_2 - \mathcal{E}_1)}
\]

We use the formula (3) and find the area of the flat figure. Since $\mathcal{E}_1 < G_1, \mathcal{E}_2 = G_2$, then

\[
S_\alpha = \frac{(-10 - (-1.3)) + (100 - (-1.3))}{2} \times (100 - (-10)) = 50938
\]

According to the formula (4):

\[
\varphi(\alpha) = \frac{50938}{50938} = 0.457
\]

Thus, a fuzzy value of efficiency was obtained in the form of the interval $[\mathcal{E}_1, \mathcal{E}_2] = [-1.3; 100]$. This means that in case of adverse circumstances, the measures for the development of corporate sports and physical education will bring the organization a loss of 1.3 rubles for each ruble of financing, and in the best case they bring profit in the amount of 100 rubles for each ruble of financing. In addition, the geometric probability of falling into the zone of inefficiency is 0.457. This probability can be described as quite low. Consequently, financing the development of corporate sports and physical education can be considered effective.

IV. CONCLUSION

Financing corporate sports and physical education is one of the necessary conditions for increasing staff productivity. For companies, the question of the ratio of costs and results remains open. The study allowed us to evaluate the economic efficiency and its level. The results of the study can be used by companies implementing activities in corporate sports and physical education.

REFERENCES