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1. INTRODUCTION

The growing market and consumer demand for quality foods with 
health benefits have generated the need for rapid and accurate 
analytical tools for the determination of bioactive compounds in 
honey and honey products. For the past years, several studies have 
reported on the determination of antioxidants in various food com-
modities. The conventional methods for analysis of phenolic com-
pounds in honey are High-Performance Liquid Chromatography 
(HPLC) with Diode-Array Detection (DAD) or UV–Vis detector 
[1,2], whereas in some cases gas chromatography–mass spectrom-
etry [3] and capillary electrophoresis have been used. Regardless 
of their precision, chemical assays are time-consuming, expensive, 
and require a large number of solvents [4]. Therefore, simple, rapid, 
and inexpensive instruments are needed. Spectroscopic technolo-
gies are widespread in the analysis of antioxidant in foods [5]. They 
have also become well-known in the investigation of honey qual-
ity because of their benefits (including speediness, directness, and 

cost-effectiveness). The existence of novel multivariate tools to deal 
with several variables simultaneously is additional motivation for 
fast changes within the domain of measurement technology and 
the sensors. The current trend of using multiple spectra simulta-
neously is more promising than a single spectrum method because 
of a better representation of multivariate analysis. The combined 
use of nondestructive methodologies and data fusion techniques 
to predict the phenolic compounds in honey has been briefly 
described in this study. It is not aimed to provide complete detail of 
the conventional chemical methods, spectral interpretations, and 
spectroscopic analysis conditions, but rather to discuss all the main 
issues related to data fusion as well as the potential implementa-
tion of measuring of single phenolic compounds in honey. Data 
obtained from different kind of instruments usually depend on 
diverse physical phenomena, thus elucidations of findings are com-
plicated. Some of the spectroscopies may be more accurate than 
others because these are more sensitive in certain circumstances 
[6]. Data fusion has been used in various areas: for instance, the 
combination of headspace–mass spectrometry, Fourier transform 
mid-infrared spectroscopy and UV–Visible spectrophotometry 
to predict virgin olive oil sensory descriptors [7], Near-Infrared 
(NIR), fluorescence, and nuclear magnetic resonance  spectroscopy 
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A B S T R AC T
The combination of Near-Infrared Spectroscopy (NIR) and Raman Spectroscopy (RS) of 100 honey samples collected from 
different countries were used to develop the calibration model for determination of single phenolic compound. In high-
performance liquid chromatography with diode-array detection analysis, 16 phenolic compounds were identified with  
p-hydroxybenzoic acid being the major compound detected in all honey samples. Thus, p-hydroxybenzoic acid was used for 
developing prediction models. Spectral data were modeled individually and using data fusion methodologies. The performance 
of the model based on RS spectra [Rp

2  = 0.9500, Root Mean Standard Error of Prediction (RMSEP) = 6.83] was higher than 
that based on the NIR spectra (Rp

2  = 0.8147, RMSEP = 13.80). The application of both low-level (Rp
2  = 0.9553, RMSEP = 6.59) 

and mid-level (Rp
2  = 0.9563, RMSEP = 7.95) data fusion together with Partial Least Squares (PLS) had effectively improved the 

prediction models of NIR but did not enhance prediction models based on RS technique. The results demonstrated that the  
NIR, RS, and data fusion approaches together with the PLS model could be used as alternative quantitative methods for 
determination of p-hydroxybenzoic acid in honey samples.
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Table 1 | Honey samples

No. Codes Botanical origin Common 
name

Geographical 
origin

 1 H1 Leptospermum  
scoparium

Manuka honey Australian (n = 7)

 2 H2 Polyfloral - Australian (n = 5)
 3 H3 Polyfloral - Germany (n = 4)
 4 H4 Citrus spp. Orange  

blossom
Spain (n = 8)

 5 H5 Eucalyptus spp. Eucalyptus 
honey

Spain (n = 7)

 6 H6 Rosmarinus  
ojicinalis L.

Rosemary 
blossom

Spain (n = 7)

 7 H7 Acacia seyal Talih Sudan (n = 8)
 8 H8 Ziziphus spina-christi Sider Sudan (n = 7)
 9 H9 Polyfloral - Sudan (n = 8)
10 H10 Ziziphus spina-christi Sider Pakistan (n = 7)
11 H11 Vitex negundo L. Chaste honey China (n = 7)
12 H12 Litchi chinensis Sonn. Lychee honey China (n = 9)
13 H13 Polyfloral Wild flower China (n = 8)
14 H14 Polyfloral - France (n = 4)
15 H15 Polyfloral - Cameroon (n = 3)

-, multispecies.

to assess oil quality [8], electronic noses and spectroscopic instru-
ments to identify the geographical olive oil [9], and electronic 
tongue and NIR for a rapid umami taste assessment [10]. Other 
promising methods, spectroscopic data, and chemometric model-
ing have been proposed for the quantification of antioxidant com-
pounds in wine [11,12], honey [13,14], coffee [15], dark soy sauce 
[16], roselle tea [17], olive oil [18], chocolate [19], apples [20], raw 
propolis [21], and Populus spp. leaves [22]. In most of these studies, 
a single technique has been used for prediction of antioxidants.

The aim of the current experiment was to investigate the cor-
relation between spectroscopy data and HPLC measurement. To 
improve the information quality and to assess the synergistic effect, 
low- and mid-level data fusion approaches were implemented to 
combine the data of NIR and Raman spectroscopy, and the out-
come was compared and discussed. Up to now, there are no cases 
of the above-mentioned combined spectroscopy techniques for the 
prediction of single phenolic compounds in honey.

2. MATERIALS AND METHODS

2.1. Chemicals Reagents

All reagents, phenolic acids, and flavonoid used for HPLC analy-
sis were of HPLC grade and the other chemicals were of analytical 
grade. Kaempferol, myricetin, rutin, caffeic acid, ferulic acid, p-hy-
droxybenzoic acid, catechol, chlorogenic acid, syringic acid, vanil-
lic acid, and quercetin were from China Sigma-Aldrich (Shanghai, 
China). Catechin, chrysin, p-coumaric acid, gallic acid, and hydroxy-
cinnamic acid were purchased from Altar Ink Quality Inspection 
Technology Co., Ltd. (Beijing, China). Milli-Q water purification 
system (Millipore Corp., Billerica, MA, USA) was used for water 
purification. Methanol was supplied by Sinopharm Chemical 
Reagent Co., Ltd Shanghai, China. Solid phase extraction (SPE) with 
C18 cartridges was supplied by Waters Corporation, Ireland.

2.2. Honey Samples

One hundred samples of honey of different botanical origins were 
obtained from different countries. The common names and botanical 
and geographical sources of honey samples are presented in Table 1.

2.3. Spectroscopic Analysis

For spectroscopic analysis, honey samples were warmed at 40°C 
and then mixed to dissolve the crystals to form homogenous sam-
ples before spectroscopic testing. Two nondestructive sensing tech-
niques including NIR and Raman spectroscopies were obtained 
from our previous work [2,14].

2.3.1. NIR spectroscopy

An Antaris II near-infrared spectrophotometer (Thermo Electron 
Co., USA) with a reflectance module was used to obtain the honey 
spectra. Each spectrum was the average of 32 scanning spectra.  
The range of spectra was from 10,000 to 4000/cm and each 
 spectrum was measured according to 3.856/cm data intervals, thus, 
each spectrum resulted in 1557 variables.

2.3.2. Raman spectroscopy

The DXR Laser Raman Spectrometer (Thermo Fisher Scientific, 
USA) coupled with excitation laser of 532 nm, the spectrograph 
allows a resolution of 5/cm using 900 lines/mm, was used to 
obtain the honey spectra. Each honey was screened using a laser 
power at the sample of 10 mW. A spectrum from each sample 
was collected for 5 min using the continuous extended scan from  
50 to 3500/cm.

2.4. Reference Analysis by HPLC-DAD

Honey samples (10 g) were diluted with 40 mL of purified water, 
adjusted to pH 2 with HCL (0.1%), and sonicated for 15 min at 
25°C. Furthermore, honey solutions were filtered through cotton 
wool to remove any solid particles. An SPE with C18 cartridges 
(Waters Corporation, Ireland) was conditioned by passing 10 mL 
of methanol and 10 mL of purified water. The filtered honey solu-
tions were loaded on the SEP cartridges and washed with 30 mL 
of acidified purified water (pH 2) to eliminate all sugars and other 
polar components of honey. The absorbed phenolic compounds 
were eluted with methanol (2 mL), and then the extracts were fil-
tered through a 0.22-μm membrane filter before being quantified 
by HPLC-DAD. Separation of phenolic compounds was performed 
on Zorbax SB-C18 column (250 mm, 149 × 4.6 mm, 5 μm particle 
size, Agilent Technologies, USA). The detailed analysis, condition, 
and validation parameters of HPLC-DAD investigation can be 
found in our previously published work [2].

2.5. Multivariate Data Analysis

The spectral preprocessing and partial least square regres-
sion (PLSR) model were computed using Matlab Version 7.1 
(Mathworks Inc., Natick, MA, USA). The obtained spectra of NIR 
and Raman include noises as well as the honey information. Hence, 
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the pretreatment is important to reduce the interferences and 
undesirable information, and enhance the contribution of chemical 
components. On the basis of our previous work [2], the optimum 
pretreatments for Raman were Savitzky–Golay algorithm (15 data 
points and a second-order polynomial function) and Multiplicative 
Scatter Correction (MSC). Whereas for NIR, it was found that stan-
dard normal variate performed better as compared with another 
noted method.

Figure 1 shows the raw spectra of analyzed honey samples. In this 
work, the whole spectrum regions were (400–10,000/cm) for NIR 
and (1500–400/cm) for Raman.

From Figure 1, it is clear that honey samples presented characteris-
tic bands and they have the potential to be used for detecting phe-
nolic compound using chemometrics. The detailed interpretations 
of bands from the two spectroscopic techniques can be found in the 
literature [2,23–25].

For developing chemometrics model, the spectral data were classi-
fied into calibration and prediction sets as described in our previous 
study [14]. Briefly, all 100 samples were classified randomly based 
on their corresponding y-value (viz. the phenolic compound data). 
With respect to the classification of the calibration/prediction sets, 
17 spectra of each 50 types of honey were located for the prediction 
set. Therefore, the calibration and prediction sets have 64 and 36 
spectra, respectively. PLSR is generally used as statistical tool for 
constructing linear regression models based on the variable matrix 
X (spectroscopic data) and variable matrix Y  (p-hydroxybenzoic 

acid data) by guaranteeing that all latent  variables were set on the 
basis of their relevance for predicting Y [26]. The Latent Variables 
(LVs) of the PLSR models were determined by leave-one-out 
cross-validation by mapping the number of factors against the Root 
Mean Squared Error Cross Validation (RMSECV). The optimum 
number of LVs was determined by the lowest value of RMSECV. 
The performance of the PLSR models was evaluated using Rc, Rp, 
Root Mean Standard Error of Prediction (RMSEP), RMSECV, and 
the Ratio of Prediction to Deviation (RDP) values. In general, an 
excellent model must have high correlation coefficients and RDP 
value with low RMSECV and RMSEP [17,27,28].

2.6. Data Fusion

Data fusion can be performed at three levels: low, medium, and 
high. For low-level data fusion, the original data are simply merged 
after applying appropriate preprocessing methods. It is also pre-
disposed to huge data computation, tedious and worse real-time; 
high-level data fusion (i.e., decision-making level) requires skills 
and immense data pretreatments [29]. Mid-level fusion includes 
extraction of features from each spectral source separately before 
data fusion then merge them into a single block, which will be 
processed by a calibration method. Generally, the highest scores 
from the Principal Component Analysis (PCA) or Partial Least 
Squares (PLS) regression were combined. In the present study, 
data compression using PCA were implemented. Briefly, PCA was 
performed on each data set  individually and two approaches were 

Figure 1 | Raw spectra of different honey varieties. (a) NIR 
spectra with a reflectance module (4000–10,000/cm) and 
(b) Raman spectra with Raman shift value (3500–50/cm).

(a)

(b)
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attempted to select the number of PCs to be combined from the 
two data sets. In the first method (approach 1), a constant number 
of PCs – 10 were taken for each data set and merged in the fused 
matrices of the size 100 × 20 (for the two data sets). In the second 
method (approach 2), a different number of PCs, corresponding to 
the highest total variance was selected for each data set and merged. 
Approach 1 (i.e., a fixed number of PCs) improved the prediction 
results, hence, it was adopted in this experiment.

3. RESULTS AND DISCUSSION

3.1. Phenolic Compound Profiles

In this study, 16 phenolic compounds have been identified in honey 
samples from various countries (Table S1). About 11 phenolic com-
pounds have been identified in Australian Manuka honey with 
p-coumaric acid (64.08 mg/100 g) and catechin (60.71 mg/100 g) 
being the major compounds, whereas chrysin was at a lower level 
(0.81 mg/100 g). The concentrations of phenolic compounds in 
Manuka honey are higher than previously reported [30]. The higher 
concentration of phenolic compounds that were detected could be 
due to variations in the seasons and the effective approach (e.g., 
weight and extraction condition) adopted in this study. Similar dif-
ferences in concentrations were reported in the literature [30–32]. 
All detected compounds have been previously reported in honey 
[2,30,33]. Polyfloral honey obtained from Australia showed a fewer 
number of phenolic compounds (syringic acid, p-hydroxybenzoic 
acid, and vanillic acid).

The honey richest in p-hydroxybenzoic acid was polyfloral sam-
ples collected from Germany, whereas Australian polyfloral and 
Rosemary blossom showed lower values. The highest concen-
trations of syringic acid were present in Cameroonian polyfloral 
honey (110.06 mg/100 g) and German honey (85.01 mg/100 g), 
whereas the lowest value was detected in Chinese chaste honey 
(1.28 mg/100 g). Among the analyzed honey samples, orange blos-
som showed the highest catechin content (161.81 mg/100 g) fol-
lowed by Spanish eucalyptus honey (119.58 mg/100 g) and French 
polyfloral honey (118.74 mg/100 g). Vanillic acid was the major 
compound in Spanish eucalyptus honey and Pakistani Sider honey 
and Lychee honey showed the lowest value. Low concentration of 
gallic acid were detected in polyfloral honeys obtained from France 
and Germany but was not present in any other sample. The pro-
file of phenolics of Sider honey obtained from Sudan and Pakistan 
were significantly different (Table S1). Caffeic acid and rutin were 
only detected in Sudanese Sider honey, whereas catechin and chry-
sin were only present in Pakistani Sider honey. The concentrations 
of phenolic compounds in both Sider honey samples varied from 
those reported in the literature [2,34,35].

The total amount of phenolic compounds measured in the ana-
lyzed honeys followed the order: H10 > H8 > H7 > H1 > H3 > 
H12 > H4 > H14 > H5 > H9 > H15 > H11 > H13 > H2 > H6. 
Interestingly,  significant differences in phenolic compounds were 
observed among honey samples of the same botanical origin but of 
different geographical origins and different seasons [1,2]. Among 
the phenolic compounds analyzed, only p-hydroxybenzoic acid 
was identified in all honey samples examined; thus, this com-
pound was selected for developing a prediction model. Table 2 

Table 2 | p-Hydroxybenzoic acid (mg/100 g) in honey samples from 
different geographical origins

Countries Minimum Maximum Mean SD CV

China 23.14 98.15 50.67 33.04 65.25
Pakistan 47.98 49.45 48.68 0.43 0.88
Spain 8.35 45.20 22.11 13.04 58.98
Australian 2.99 25.46 15.50 11.17 72.11
Germany 120.21 120.51 120.32 0.11 0.09
France 28.18 29.60 29.07 0.49 1.68
Sudan 40.98 88.98 65.18 20.29 31.14
Cameroon 22.15 23.25 22.63 0.40 1.77

SD, standard deviation; CV, Coefficient of variation; CV = [{SD/Mean} × 100].

shows the  p-hydroxybenzoic acid in honey samples from different 
 geographical origins. This variation could be attributed to the dif-
ferences in geographical and botanical origins of honey (Table 1).

The descriptive data presented in Table 3 indicate that the categories 
of honey studied significantly vary in p-hydroxybenzoic acid content 
in the calibration and prediction sets. From Table 3, it is clear that the 
range of reference chemical data in the calibration set cover the range 
of prediction sets and there are no significant differences between 
their standard deviations. Thus, the distribution of the samples is 
convenient both in the calibration and in the prediction sets.

3.2.  NIR, Raman and Data Fusion 
 Approaches

The prediction of p-hydroxybenzoic acid content was performed 
using a PLS model in which p-hydroxybenzoic acid was predicted 
from full NIR spectra (1557 spectra) and selected region of Raman 
(1142 spectra). Table 3 indicates the parameters used to assess 
the performance of the established PLS model for prediction of 
 p-hydroxybenzoic acid in the analyzed honey samples. Scatter 
plots of experimental against predicted values for NIR and Raman 
have been indicated in Figure 2. Although both techniques showed 
good prediction results, the PLS model using the Raman data as X 
outperformed NIR, as the first technique obtained higher R2 and 
RDP values than when NIR spectra were used as X. However, the 
use of R2 and RDP to validate whether the fit model is satisfactory 
may not be the most suitable method. There are other parameters 
that could be evaluated. RMSECV, RMSEP, and LVs can provide 
information about the robustness and the global error of the cal-
ibration and prediction models. Raman spectroscopy obtained 
lower RMSECV and RMSEP and a smaller number of LVs. This 
was expected as NIR provided a large number of spectra (1557), 
however, not all of them contained useful information. To improve 
the results obtained by the NIR technique and to combine the ben-
efit of the synergistic effect of different sources of information, two 
data fusion strategies were adopted.

Data fusion approaches are now widely used for prediction of phe-
nolic compounds in foods [2,12,36–38]. In this experiment, the 
PLS model based on data fusion was established. For combining 
NIR and Raman, the spectra were scaled using simple mean cen-
tering and variance scaling before integrating spectra to give alike 
weights to the data obtained from techniques of different features. 
Subsequently, the entire preprocessed NIR spectra and the selected 
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Table 3 | Descriptive statistics for p-hydroxybenzoic acid content used for developing PLSR model

Calibration set (N = 64)      Prediction set (N = 36)

Range Mean SD Range Mean SD

p-Hydroxybenzoic acid (mg/100 g) 2.99–120.51 41.92 33.06 9.10–120.32 40.12 30.15

SD, standard deviation.

Raman region merged in a single matrix had the number of col-
umns equal to the number of honey samples and the number of 
rows equal to the total number of data (selected regions). The 
low-level data fusion substantiates the fact that it is beneficial to 
integrate NIR and Raman spectra, as the combined data model 
performed significantly better than PLS model based exclusively 
on NIR data (Figure 2). This could be due to the integration of the 
information from two technologies that could potentially provide 
comprehensive information and this can improve the results. In 
fact, it only makes sense to compare the result of low-level data 
fusion with the PLS models based on NIR spectra as Raman proved 
to be more adequate than low-level data fusion model and NIR 
based ones. Therefore, one is interested in investigating the effect 
of mid-level data fusion on the performance of the PLS model.

Figure 2 | Correlation plots for the prediction of p-hydroxybenzoic acid using PLS based on the (a) NIR and (b) Raman combined with (c) low-level 
data fusion and (d) mid-level data fusion.

(b)(a)

(c) (d)

Table 4 presents the calibration and prediction results acquired 
using the two data sets. As already stated, the PLS model was devel-
oped using the most significant PC scores. Therefore, the original 
number of variables for NIR and Raman (2699) matrix was reduced 
to 20 PCs. As could be seen in Table 4, after applying data extraction 
and combination, in comparison with PLS model based on NIR, 
the model constructed for prediction of p-hydroxybenzoic acid 
based on mid-level data fusion delivered better results. Although 
low- and mid-level data fusion improves the PLS model based on 
NIR spectra, it does not improve PLS model based on Raman; indi-
cating that PLS model based on the integrated information cannot 
effectively improve the prediction performance of PLS model based 
on the Raman spectra, not even after PC extraction, which was in 
agreement with the literature [39]. Table 4 shows that the result of 
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Table 4 | Summary of PLS prediction results for p-hydroxybenzoic acid in 
honey using NIR and Raman spectroscopies

Spectroscopic 
techniques LVs

Calibration  
set (N = 64)

       Prediction  
   set (N = 36)

RDP

Rc
2 RMSECV Rp

2 RMSEP

NIR 10 0.8181 14.00 0.8147 13.80 2.18
Raman  3 0.9700 6.11 0.9500 6.83 4.41
Low-level data 

fusion
10 0.9645 6.08 0.9553 6.59 4.58

Mid-level data 
fusion

10 0.9728 5.31 0.9563 7.95 3.79

LVs, latent variables; RDP, the ratio of prediction to deviation [SD/RMSEP];  
RMSECV, root mean squared error cross validation; RMSEP, root mean squared error  
of  prediction.

mid-level data fusion is closely related to the low-level data fusion 
in terms of correlation coefficient values. However, a greater scat-
tering of data for the mid-level data fusion was observed. This 
greater dispersion is in relation to RMSEP value as indicated in 
Table 4. The determination of coefficient R2 obtained for the NIR, 
Raman, and the two data fusion approaches together with the PLS 
model could be used as alternative quantitative method for deter-
mination of p-hydroxybenzoic acid in honey samples.

Finally, this present article is the continuation of our previous fea-
sibility study on honey collected from Sudan [2]. We have tried 
to investigate the feasibility of generalization of similar studies in 
honey samples collected from different countries. Both studies 
have demonstrated the feasibility of detecting the single phenolic 
compound in honey; however, it was also a challenge to find pre-
dominant single compounds in honey from the different countries.

4. CONCLUSION

This study compared NIR, Raman, and the two data fusion 
approaches in the quantification determination of p-hydroxyben-
zoic acid in honey and all methodologies could be used for the 
prediction of single phenolic acid in honey. The RMSEP of low-
level data fusion (6.59) was lower than that of mid-level data fusion 
(7.95) and Rp

2 of low-level data fusion (0.9553). Whereas the mid-
level data fusion (0.9563) was significantly higher than the NIR 
model (0.8147) but no significant effect was observed for Raman 
(0.9500). For the application of mid-level data fusion, PCA was 
applied for extracting information. This reduced the number of 
variables, but it did not improve the results of Raman, demon-
strating that the added NIR data is relatively not used. The advan-
tages of the data fusion in the present paper are obvious for solo 
NIR models because the prediction results of the fused data are 
higher than 0.95, hence indicate that the data obtained from the 
two technologies have a synergistic effect. From a practical view-
point, the potential of determining single phenolic compounds 
by single or multi-spectroscopic techniques is essential evidence 
that provides the opportunity to extend the application of these 
technologies to a larger number of laboratories. In fact, just by 
low-level data fusion it will be  possible to answer the question: 
“Does data fusion approach improve the prediction of single phe-
nolic compounds in honey?”
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