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ABSTRACT
In recent times, to improve the interpretability and accuracy of computing with words processes, a rich linguistic representation
model has been developed and referred to as Extended Comparative Linguistic Expressions with Symbolic Translation (ELICIT).
This model extends the definition of the comparative linguistic expressions into a continuous domain due to the use of the
symbolic translation concept related to the 2-tuple linguistic model. The aggregation of ELICIT information via a suitable rule
that reflects the underlying interrelation among the aggregated information in output is the key tool to design decision-making
algorithm for solving multi-attribute decision-making problems under linguistic information. In this study, we introduce three
aggregation operators for aggregating ELICIT information in aim of capturing three different types of interrelationship patterns
among inputs, which we refer to as ELICIT Bonferroni mean, ELICIT extended Bonferroni mean and ELICIT partitioned Bon-
ferroni mean. Further, the key aggregation properties of these proposed operators are investigated with the proposal of weighted
forms. Based on the proposed aggregation operators, an approach for solving multi-attribute decision-making problems, in
which attributes are interrelated is developed. Finally, a didactic example is presented to illustrate the working of the proposal
and demonstrate its feasibility.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

With the growing complexity of the socio-economic environment,
it is quite common to prevail the uncertainty and vagueness in
the decision-making process, in particular, the situations, where
human judgments/assessments/perceptions are inevitable to reach
a final decision over a set of alternatives [1]. The emergence of
such scenarios involving human cognition leads us to use lin-
guistic information based on the fuzzy linguistic approach [2] to
effectively manage uncertainty in such decision-making processes.
The fuzzy linguistic approach uses fuzzy set theory [3] to manage
uncertainty and model linguistic information by using linguistic
variables described by Zadeh [2] as “A variable whose values are
not numbers but words or sentences in a natural or artificial lan-
guage.” A linguistic variable is characterized by a syntactic value
or label and a semantic value. Whereas the label is a word that
belongs to a set of linguistic terms, semantics is provided by a
fuzzy set in a discourse universe. Over the years, the fuzzy linguis-
tic approach has been applied successfully in solving many practi-
cal multi-attribute decision-making (MADM) problems from the
different domains [1,4] and many linguistic computational mod-
els have been put forwarded to improve and enhance the informa-
tion modeling and computation process capability of the Zadeh’s
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approach [2]. They can be broadly classified into two distinct cate-
gories: symbolic computational models [5–7] and semantic-based
computational models [8]. In terms of simplicity and interpretabil-
ity, symbolic models stand out semantic models. The symbolic
models have evolved enormously over the years. The first proposals
[4,9,10] made use of single linguistic variables, for instance, good,
horrible, very bad, perfect, to provide the decision makers’ prefer-
ences and carried out the linguistic computations. Among these
symbolic models, 2-tuple linguistic computational model [4,5],
which enhanced the interpretability of the fuzzy linguistic approach
by introducing the concept of symbolic translation, has got wide
speared acceptance among the community and successfully applied
in solving the MADM problems [11,12]. However, in spite of many
of these approaches have been applied successfully in decision-
making problems, the modeling of linguistic information is limited
when experts provide their preferences by using just single terms.
To overcome this drawback, several proposals that obtain richer lin-
guistic expressions than single linguistic terms have been proposed
[13]. One of the most outstanding proposals is the so-called Hes-
itant Fuzzy Linguistic Term Sets (HFLTSs) [14], which were intro-
duced tomodel the hesitancy of the expertswhen they doubt among
several linguistic terms at the same time. HFLTSs are also based
on the fuzzy linguistic approach that will serve as bases to increase
the flexibility of the elicitation of linguistic information. An exam-
ple of HFLTS might be {good, very good, excellent}. Furthermore,Pdf_Folio:1179
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several decision-making proposals have been put forwarded in the
literature [15]. Although HFLTS can be directly used by the experts
to elicit several linguistic values for a linguistic variable, they are
not close to the way of expressing opinions used by human beings.
For this reason, Rodríguez et al. [14,16] proposed a formalization
process to generate linguistic expressions close to the common lan-
guage used by human beings in decision-making problems. Such
expressions, so-called comparative linguistic expressions (CLEs), are
based on HFLTSs and model the decision maker’s hesitancy by
means of the use of context-free grammars. An example of CLEs
might be between good and very good, at most bad, at least medium,
etc. Several decision-making models in CLEs environment have
been proposed by adopting different computational approaches
[17–20]. Up to this point, the CLEs are the closest to the way of
thinking of the decisionmakers but the interpretability of the results
in the existing computational approaches and information loss in
the linguistic computations are the two key concerns that restrict
their use as a decision tool under uncertainty. For this reason, in
recent times, Labella et al. [21] proposed a new fuzzy linguistic rep-
resentation for CLEs, which they referred as Extended Comparative
LInguistiC Expressions with SymbolIc Translation (ELICIT) infor-
mation. This representation takes advantage of the main character-
istic of the CLEs, their interpretability, and improves the precision
of the results by extending the representation of CLEs generated
by a context-free grammar into a continuous domain to perform
computing with words (CW) processes without any kind of approx-
imation. In this way, the proposed ELICIT computational model
overcomes the drawbacks of the earlier proposals. Some exam-
ples of ELICIT information might be between

(
good, 0.23

)0.12 and(
very good, 0.1

)0.3, at most (bad, 0)0, at least (medium, –0.1)0.11,
etc.

In the same way that representing information in the decision pro-
cess is key, the aggregation of such information, which comes from
different sources via a suitable rule (aggregation operator), plays
also a pivotal role in decision-making process by combining several
pieces of information into a single information, which represents
overall overview [22]. In the context of MADM, aggregation oper-
ators are generally used to find overall performance of the alterna-
tives from their performances against the predefined set of criteria.
The need of modeling specific interaction among the attributes and
computational formalization with different types of linguistic infor-
mation to conduct decision-making process under specific linguis-
tic environment were the cornerstone behind the development of
several classes of aggregation operators in MADM context.

In this vein, to aggregate interrelated linguistic information repre-
sented by 2-tuple linguistic information, several 2-tuple linguistic
aggregation operators have been proposed in the literature [4,23–
27]. On the other hand, to fuse linguistic information, expressed
by HFLTSs, many aggregation operators have been developed con-
sidering the nature of the interaction (independent/interrelated)
among the aggregated HFLTSs [28–33]. Despite many success-
ful uses of the hesitant fuzzy linguistic computational model in
decision-making, it has limitations in modeling complex linguis-
tic expressions by HFLTS [34] and can be overcome with the
capability of ELICIT expression. The use of ELICIT informa-
tion in the decision-making makes it necessary to consider the
issue of aggregation of ELICIT information. In this view, Labella
et al. [21] defined an aggregation operator, which we can refer to

as ELICIT arithmetic mean, to aggregate ELICIT expressions in
the decision-making process. However, the proposed aggregation
operator does not consider the interrelationship among the aggre-
gated ELICIT expressions that are connected with the underlying
interrelationship structure of associated concepts/objects, like the
attributes’ interrelationship and the corresponding ratings. Further,
considering the importance/weights of the inputs in the aggrega-
tion process is vital to take into account in many decision-making
processes and that have not been considered by Labella et al. [21].
Therefore, in spite of ELICIT information advantages, there is an
evident lack of proposals about ELICIT aggregation operators that
consider the interrelation among the ELICIT expressions and their
importance in the aggregation process. For this reason, this study
aims:

• Develop several aggregation operator to aggregate ELICIT
information by capturing different interrelationship patterns
(homogeneous, heterogeneous and partitioned structure)
among the aggregated arguments.

• Capture the homogeneous relationship among ELICIT
expressions by developing the ELICIT Bonferroni mean
(ELICITBM) operator.

• Reflect the heterogeneous interaction among the aggregated
ELICIT expressions by developing the ELICIT extended
Bonferroni mean (ELICITEBM) operator

• Capture the partitioned structured interrelationship among
aggregated ELICIT expressions by developing the ELICIT
partitioned Bonferroni mean (ELICITPBM) operator.

• Study the proposed aggregation operators properties and
weighted form to take into account weight information in the
aggregation process.

• Based on the proposed aggregation operators, present an
approach for solving MADM problems in which attributes
follow the different interrelationship patterns.

To this end, the paper is organized as follows. In Section 2, we
provide a brief primer of classical aggregation operator that cap-
tures interrelationship of among the aggregated arguments along
with fuzzy set theory. A brief overview of the ELICIT represen-
tation and computational model is also included in Section 2.
In Section 3, we develop three aggregation operators to fuse
the ELICIT information according to their underlying interrela-
tionship structures, namely, ELICITBM, ELICITEBM and ELIC-
ITPBM. The key properties of these operators are also studied along
with the weighted forms: ELICITWBM, weighted ELICITEBM
(ELICITWEBM) and WELICITPBM. In Section 4, an aggregation
operator-based approach to solving theMADMproblems, in which
attributes are interrelated with different patterns is proposed. A
didactic example is presented in Section 5 to illustrate the work-
ing of our approach and feasibility. Finally concluding remarks are
made in Section 6.

2. PRELIMINARIES

In this section, we overlay the key concepts related to Bonfer-
roni mean (BM), arithmetic operational laws of fuzzy numbers
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and ELICIT information for easy understanding of our subsequent
proposals on aggregation of interrelated ELICIT information and
linguistic decision-making process.

2.1. Aggregation Operators for Interrelated
Information

In this section, we briefly introduce the BM and its variants, which
are capable of capturing different kinds of interrelationship patterns
among the aggregated information. We start by recalling the defi-
nition of the BM operator.

Definition 1. [35] Let p and q ≥ 0, p + q > 0. For an input vector
a = (a1, a2, ..., an) ∈ [0, 1]n, the BM can be defined as a mapping
BM : [0, 1]n → [0, 1] and given by

BMp,q (a1, a2, ..., an) =

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n

∑
i, j = 1
i ≠ j

api a
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

(1)

Although, BM was introduced by Bonferroni [35] in 1950, it is ana-
lyzed and interpreted in decision-making context by Yager [36].
Specifically, BM captures a homogeneous interrelationship pattern
among the inputs that every input ai ∈ a is related to the rest of
the inputs of a. But in many real-life contexts, such homogeneous
connections among the inputs may not exist rather the inputs are
related to each other in a heterogeneously related fashion. To cap-
ture such heterogeneous connections among the inputs, Dutta et al.
[25] developed a new aggregation operator, which is referred to as
extended Bonferroni mean (EBM). Based on heterogeneous con-
nection among the inputs, they classified inputs a into two cate-
gories U and V, where every input of U is related to a subset of the
rest of the inputs, i.e., Ei ⊂ a ∖ {ai} and the inputs ofV are not related
to each other. Having this interpretation of the heterogeneous inter-
relationship pattern, the rule for the EBM aggregation operator is
given by

Definition 2. [25] For any p > 0 and q ≥ 0, the EBM operator of
dimension n is a mapping EBM : [0, 1]n → [0, 1] such that

EBMp,q (a1, a2,⋯ , a3)

=
⎛⎜⎜⎜⎝
n – ||I′||

)
n

(
1

n–|I′|)
∑
i∈I′

api

(
1
|Ii|

∑
j∈Ii

apj

)) p
p+q

+ ||I′||
n

(
1
|I′|∑i∈I′

api

)⎞⎟⎟⎟⎠
1
p

(2)

where Ii is the set of indices of the elements of Ei, I′ is the collection
indices of the inputs of V, |I′| denotes the cardinality of the set I′
and empty sum is zero by convention with 0

0 = 0.
Partitioned Bonferroni mean (PBM) is another variant of BM,
which is capable of capturing partition structure interrelationship
pattern among the input set in the aggregation process and reflects

it in the aggregated value [24]. In the following, we provide a brief
description of the specific partition structure interrelationship pat-
tern and PBM operator.

Let a = (a1, a2, ..., an) be the collection of inputs, with ai’s being
non-negative real numbers. Suppose, on the basis of the interrela-
tionship pattern, the input set a is partitioned into d distinct classes
P1, P2, ..., Pd such that Pi ∩ Pj = 𝜙 for all i ≠ j, i, j ∈ {1, 2, ..., d},
∪d
r=1Pr = a and|Pi| ≥ 2 for all i = 1, 2, ..., d. We further assume

that the inputs of each Pi are interrelated and there is no inter-
relationship among the inputs of any two partitions Pi and Pj
whenever i, j ∈ {1, 2, ..., d} and i ≠ j. With these assumptions and
notations, the PBM operator of the collection of inputs
(a1, a2, ..., an) is defined as follows:

Definition 3. [24] For p, q ≥ 0 with p + q > 0, the PBM operator
is a mapping PBM : [0, 1]n → [0, 1] such that

PBM (a1, a2, ..., an)

= 1
d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d
∑
r=1

⎛⎜⎜⎜⎜⎜⎝
1
|Pr|

∑
i∈Pr

api

⎛⎜⎜⎜⎜⎜⎝
1

|Pr| – 1
∑
j ≠ i

j ∈ Pr

aqj

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

1
p+q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3)

where |Pr| denotes cardinality of Pr.

It is evident from the Definitions 1 and 3 that BM is a special case
PBM when all the inputs belong to same class [24]. To establish
more concrete link between BM and PBM, we can write Eq. (3) as
follows:

PBMp,q (a1, a2, ..., an)

= 1
d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d
∑
r=1

⎛⎜⎜⎜⎜⎜⎝
1

|Pr|
(
|Pr| – 1

) ∑
i, j ∈ Pr
i ≠ j

api a
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= 1

d

d
∑
r=1

BMr (ai ∈ Pr)

(4)

where,

BMr (ai ∈ Pr) =

⎛⎜⎜⎜⎜⎜⎝
1

|Pr|
(
|Pr| – 1

) ∑
i, j ∈ Pr
i ≠ j

api a
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

and (ai ∈ Pr) denotes the set of inputs belongs to the partition Pr.
With the help of Eq. (4), we can interpret PBM as arithmetic aver-
age of BM over different partition of the given input set. Therefore,
one can compute the aggregated value of an input set by PBM via
computing BM over different partitions.Pdf_Folio:1181
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2.2. Arithmetic Operations of Fuzzy
Numbers

In this section, key concepts associated with the fuzzy numbers and
their operational laws are briefly described.We start by recalling the
definition of a fuzzy set, which is well known to model the concept
that does not possess the sharp boundaries. Throughout this article,
we will restrict ourselves to the class of fuzzy sets over the universe
of discourse X which is a subset of the set of real numbersℝ.

Definition 4. [3] A fuzzy set Ã over the universe of discourse
X is characterized by a membership function, which associates
every element of x ∈ X to a real number from the interval [0, 1] and
denoted as

𝜇Ã :X → [0, 1] (5)

A fuzzy set Ã can also be defined with help of ordered pairs of
generic element x ∈ X and the corresponding membership degree
(𝜇Ã (x)) and represented as

Ã = {(x, 𝜇Ã (x)) |x ∈ X} (6)

Definition 5. [3] The support of the fuzzy set Ã over the universe
of discourse X is the set of all elements x ∈ X, such that, the mem-
bership degree is greater than 0, i.e.,

Supp
(
Ã
)
= {x ∈ X|𝜇Ã (x) > 0} . (7)

Definition 6. [37] A fuzzy set Ã is said to be normal if there exists
a x0 ∈ X such that 𝜇Ã (x0) = 1.
Definition 7. [37]A fuzzy setA over a convex universe of discourse
X is said to be convex if

𝜇A
(
𝜆x + (1 – 𝜆) y

)
≥ min {𝜇A (x) , 𝜇A

(
y
)
} ,

for all x, y ∈ supp (A) and 𝜆 ∈ [0, 1].
Definition 8. [37] A fuzzy number Ã over the universe of discourse
X ⊂ ℝ is a special fuzzy set, which is convex and normal.

As a fuzzy set is completely characterized by its membership func-
tion, we can say the membership functions are synonyms of the
fuzzy sets. Although any function f :X → [0, 1] can serve as amem-
bership function, in practice trapezoidal and triangular member-
ship functions are widely used to quantify the fuzzy meaning of the
linguistic terms used by the decision maker to express their opin-
ions in natural language.

Definition 9. A trapezoidal fuzzy number (TrFN) Ã = (a, b, c, d)
with four parameters a, b, c, d (a ≤ b ≤ c ≤ d) is a fuzzy subset of
the real line ℝ and described by its membership function 𝜇Ã as
follows:

𝜇Ã (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x – a
b – a

if a ≤ x < b

1 if b < x ≤ c
d – x
d – c

if c < x ≤ d

0, otherwise

(8)

Definition 10. A triangular fuzzy number (TFN) Ã = (a, b, c)with
three parameters a, b, c (a ≤ b ≤ c) is a fuzzy subset of the real line
ℝ and described by its membership function 𝜇Ã as follows:

𝜇Ã (x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x – a
b – a

if a ≤ x < b

1 if x = b
c – x
c – b

if b < x ≤ c

0, otherwise

(9)

The obvious motivations behind the use of trapezoidal and TFNs
come from the simplicity of the membership functions and their
characterization requires reasonably limited information about the
linguistic term [38,39]. For example, when a triangular Ã = (a, b, c)
is used to quantify a linguistic term, the triplet (a, b, c) represents
the lower, most likely and upper values of that linguistic term with
varied membership degree, described via membership function
𝜇Ã (x).
The fuzzy arithmetic operational laws allow us to facilitate the
computation over linguistic information. There are several ways to
derive the arithmetic operational laws of the fuzzy numbers based
on the Zadeh’s extension principle [37]. As in the ELICIT com-
putational model [21] the meaning of the primary linguistic term
sets are represented by using TFNs or TrFNs, we restrict ourselves
on fuzzy arithmetic operational laws, which preserve the shape of
the original fuzzy numbers. In this view, we adopt Chen’s func-
tion principle based arithmetic operational laws, which is given as
follows [40]:

Definition 11. Let Ã = (a1, b1, c1, d1) and B̃ = (a2, b2, c2, d3) be
the two positive TrFNs. Following Chen’s function Then arithmetic
operations between Ã and B̃ can be defined as follows:

• Addition: Ã⊕ B̃ = (a1 + a2, b1 + b2, c1 + c2, d1 + d2)

• Multiplication: Ã⊗ B̃ = (a1a2, b1b2, c1c2, d1d2)
• Scalar multiplication: rÃ = (ra1, rb1, rc1), r > 0
• Exponent: Ãr =

(
ar1, b

r
1, c

r
1
)
, r > 0.

Note that the function principle based arithmetic laws differ from
extension principle-based arithmetic laws in multiplication opera-
tion as the former approximate resultant fuzzy number shape. Fur-
ther, one may observe that with the increment of the number of
aggregated fuzzy numbers in the aggregation process, the difference
between function principle based aggregation and extension princi-
ple based aggregation results diminishes.

2.3. ELICIT Information

Despite the evolution of the symbolic approaches over the time
[4,14,16], there exists several drawbacks in terms of interpretability
and/or accuracy. ELICIT information allows us to keep the inter-
pretability and precision of the results in MADM problems under
linguistic environments thanks to the extension of CLEs into a con-
tinuous domain. To carry out such extension, the ELICIT expres-
sions are generated bymeans of a context-free grammar by using the
symbolic translation concept used by the 2-tuple linguistic model.Pdf_Folio:1182
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Definition 12. [21] Let GH be a context-free grammar and S =
{s0, … , sg} a linguistic term set. The elements of GH = (VN,VT, I, P)
are defined as follows.

VN = {
(
continuous primary term

)
,
(
composite term

)
,(

unary relation
)
,
(
binary relation

)
,
(
conjunction

)
}

VT = {at least, at most, between, and, (s0, 𝛼)𝛾 , … ,
(
sg, 𝛼

)𝛾}
I ∈ VN

The production rules defined in an extended Backus–Naur Form
are:

P = {I ∶∶=
(
continuous primary term

)
|
(
composite term

)(
composite term

)
∶∶=

(
unary relation

)(
continuous primary term

)
|
(
binary relation

)(
continuous primary term

) (
conjunction

)(
continuous primary term

)(
continuous primary term

)
∶∶= (s0, 𝛼)𝛾 | (s1, 𝛼)𝛾 |… |

(
sg, 𝛼

)𝛾(
unary relation

)
∶∶= at least|atmost(

binary relation
)
∶∶= between(

conjunction
)
∶∶= and}

Therefore, the possible ELICIT expressions generated according to
the previous context-free grammar are: “at least (si, 𝛼)𝛾”, “at most
(si, 𝛼)𝛾” and “between (si, 𝛼1)𝛾1 and

(
sj, 𝛼2

)𝛾2” (see Figure 1).

To obtain linguistic results represented by ELICIT information in
decision-making processes, a novel approach was introduced in
[21]. This approach starts from linguistic preferences provided by
the experts modeled by CLEs and/or ELICIT information. After-
ward, CLEs and ELICIT information are transformed into TrFNs.
Whereas the CLEs are transformed into TrFNs through the com-
putation of their fuzzy envelope [18], the transformation of the
ELICIT information into TrFNs is carried by means an inverse
function.

Definition 13. [21] Let EL1 be an ELICIT expression and
T (a, b, c, d) a TrFN. The function 𝜁–1 is defined as:

𝜁–1 :EL1 → T (a, b, c, d) (10)

Such that, from an ELICIT expression, it returns its equivalent
TrFN.

In this point, the adjustment, 𝛾, of the ELICIT expression plays a
key role. The adjustment is an additional parameter included in the
ELICIT expression,whichwill be used to obtain the respective fuzzy
number from an ELICIT expression by using its inverse function,
𝜁–1, preserving as much information as possible in the fuzzy repre-
sentation and facilitating accurate computations. Depending on the
ELICIT expression, the 𝜁–1 function is defined in different ways.

A. At least expression: The function 𝜁–1 for an ELICIT expression
whose relation is at least is defined as follows:

Definition 14. [21] Let at least (si, 𝛼)𝛾 be an ELICIT expres-
sion andTELICIT (a′, b′, 1, 1) the fuzzy envelope of such ELICIT
expression. There is a function 𝜁–1:

𝜁–1 (at least (si, 𝛼)𝛾) = T (a, b, 1, 1)
a = a′ + 𝛾
b = b′

B. At most expression: The function 𝜁–1 for an ELICIT expression
whose relation is at most is defined as follows:

Definition 15. [21] Let atmost (si, 𝛼)𝛾 be an ELICIT expres-
sion andTELICIT (0, 0, c′, d′) the fuzzy envelope of such ELICIT
expression. There is a function 𝜁–1:

𝜁–1 (atmost (si, 𝛼)𝛾
)
= T (0, 0, c, d)

c = c′
d = d′ + 𝛾

C. Between expression: The function 𝜁–1 for an ELICIT expression
whose relation is between is defined as follows:

Definition 16. [21] Let between (si, 𝛼1)𝛾1 and
(
sj, 𝛼2

)𝛾2 be
an ELICIT expression and TELICIT (a′, b′, c′, d′) the fuzzy enve-
lope of such ELICIT expression. There is a function 𝜁–1:

𝜁–1 (between (si, 𝛼1) and
(
sj, 𝛼2

))
= T (a, b, c, d)

a = a′ + 𝛾1
b = b′
c = c′
d = d′ + 𝛾2

Remark 1.

Appendix A.1 has been included in order to show the performance
of 𝜁–1 through a practical example.

Figure 1 ELICIT information examples.
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Once the TrFNs are obtained, they are manipulated and aggregated
by means of fuzzy operations that keep the fuzzy parametric repre-
sentation of such TrFNs [41]. Finally, the resulting TrFNs, noted as
𝛽, are retranslated into ELICIT information. This process consists
of several steps, which are briefly described below:

1. Identify relation: The relation of the ELICIT expression is
determined by the fuzzy number ̃𝛽 and the 𝜁 function, defined
in [21] as follows:

Definition 17. Let S = {s0, … , sg} be a set of linguistic terms
and ̃𝛽 a fuzzy number. The function 𝜁 is given by Eq. (11) as
shown in the beginning of the next page.

For sake of space, it is assumed that the ELICIT expression is
composed by a “between” relation (see [21] for further detail
about the construction of other ELICIT expressions).

𝜁
( ̃𝛽

)
= EL, where

⎧⎪
⎨⎪
⎩

EL = at least (si, 𝛼)𝛾 if ̃𝛽 = T (a, b, 1, 1)
EL = atmost (si, 𝛼)𝛾 if ̃𝛽 = T (0, 0, c, d)
EL = between (si, 𝛼1)𝛾1 and

(
sj, 𝛼2

)𝛾2
if ̃𝛽 = T (a, b, c, d)

(11)

2. 2-tuple linguistic terms computation: The ELICIT expression
with the relation “between” is composed by two continuous pri-
mary terms (si, 𝛼1)𝛾1 and

(
sj, 𝛼2

)𝛾2 . The process of obtaining
such terms is divided into different steps:
(a) Compute linguistic terms: To select the linguistic terms si

and sj ∈ S, i, j ∈ {0, … g}, whose distance between the
coordinates x of their respective centroids [42], xi and xj,
and the points b and c belonging to ̃𝛽 is minimal.

i = arg min
h

||b – xh|| , h ∈ {0, … , g}
j = arg min

h
||c – xh|| , h ∈ {0, … , g}

(12)

The ELICIT expression so far is “between (si, ?)? and(
sj, ?

)?”.
(b) Compute symbolic translations: According to [4,43], 1/2g

represents the distance equivalent to a symbolic transla-
tion equal to 0.5 in S, where g + 1 is the cardinality of S:

𝛼1 = g ⋅
(
b – xi

)
𝛼1 ∈ [–0.5, 0.5)

𝛼2 = g ⋅
(
c – xj

)
𝛼2 ∈ [–0.5, 0.5)

(13)

The ELICIT expression so far is “between (si, 𝛼1)? and(
sj, 𝛼2

)?”.
3. Compute adjustments: The steps to compute the adjustments

for the ELICIT expression are:
(a) Compute HFLTS: The HFLTS of an ELICIT expression

whose relation is between would be composed by:

EELICIT
(
between (si, 𝛼) and

(
sj, 𝛼

))
=

{sk| (si, 𝛼) and
(
sj, 𝛼

)
and si < sk < sj where sk ∈ S}

(b) Compute fuzzy envelope: The fuzzy envelope [18] of the
computed HFLTS is computed and noted as TELICIT =
T (a′, b′, c′, d′).

(c) Compute adjustments 𝛾1 and 𝛾2: The adjustments 𝛾1 and
𝛾2 are determined by the subtraction between the points
a and d of ̃𝛽 = T (a, b, c, d) and the points a′ and d′ of
TELICIT (a′, b′, c′, d′), so that:

𝛾1 = a – a′ 𝛾1 ∈ [0, 1]
𝛾2 = d – d′ 𝛾2 ∈ [0, 1] (14)

Finally, the ELICIT expression is completed “between
(si, 𝛼1)𝛾1 and

(
sj, 𝛼2

)𝛾2”.
Remark 2.

Appendix B.1 has been included in order to show the retranslation
process through a practical example.

3. AGGREGATION OF INTERRELATED
ELICIT EXPRESSIONS

The fusion of linguistic information that is represented by CLEs
and/or ELICIT expressions according to underlying interrelation-
ship structure of the information is essential to design a variety of
linguistic decision-making processes. In this section, we extend the
classical interrelated aggregation operators described in the previ-
ous section to aggregate the ELICIT expressionswith certain under-
lying interrelationship pattern. From now onward, we are going to
use  to denote the set of all possible ELICIT expressions over a
linguistic term set S.

3.1. ELICIT Bonferroni Operators

Based on the Definition 1, the homogeneously interrelated ELICIT
expressions can be aggregated as follows:

Definition 18. Let EL = (EL1,EL2, ...,ELn) be the collection of
n ELICIT expressions from  . For any p, q ≥ 0 with p + q > 0,
the ELICITBM operator is a mapping ELICITBM :n →  and
defined as follows:

ELICITBMp,q (EL1,EL2, ...,ELn)

= 𝜁

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1) ⊕
i, j = 1
i ≠ j

(
𝜁–1 (ELi)

)p ⊗ (
𝜁–1 (ELj))q

⎞⎟⎟⎟⎟⎟⎠

1
p+q

(15)

where ⊕ represents the addition of fuzzy numbers and ⊗ denotes
the multiplication of fuzzy numbers.

Based on the arithmetic operational laws of fuzzy numbers, we
illustrate the computational formula of ELICITBM in the following
theorem:

Theorem 1. Let EL = (EL1,EL2, ...,ELn) be the collection of n
ELICIT expressions from  . For any p, q ≥ 0 with p + q > 0, thePdf_Folio:1184
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aggregated value of ELICIT expressions by ELICITBM is a ELICIT
expression and given by

ELICITBMp,q (EL1,EL2, ...,ELn)

= 𝜁

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

api a
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

bpi b
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

cpi c
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

dpi d
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(16)

where 𝜁–1 (ELi) = (ai, bi, ci, di) is the equivalent fuzzy number of the
ELICIT expression ELi for all i = 1, 2, ..., n.

Proof. Please see Appendix C.1

Remark 3.

With the notation of the BM operator, the computational formula
for ELICITBM (Eq. 16) can be rewritten as follows:

ELICITBMp,q (EL1,EL2, ...,ELn)
= 𝜁

(
BMp,q (a1, a2, ..., an) ,BMp,q (b1, b2, ..., bn) ,
BMp,q (c1, c2, ..., cn) ,BMp,q (d1, d2, ..., dn)

) (17)

Example 1.

Let us consider the aggregation of homogeneously interrelated
ELICIT information: EL1 = at least (s4, 0)0, EL2 = at least (s5, 0)0,
EL3 = atmost (s3, 0)0 EL4 = between (s3, 0)0 and (s4, 0)0. To cap-
ture the homogeneous interrelation pattern in the aggregation pro-
cess, we are going to employ ELICITBM operator with parameters
p = q = 1. As per Theorem 1, we first obtain the fuzzy numbers
corresponding to the given ELICIT by utilizing Definitions 14–16
with the semantics of linguistic terms defined in Figure 1 as fol-
lows: 𝜁–1 (EL1) = (0.5, 0.86, 1, 1), 𝜁–1 (EL2) = (0.67, 0.98, 1, 1),
𝜁–1 (EL3) = (0, 0, 0.36, 0.67), 𝜁–1 (EL4) = (0.34, 0.5, 0.67, 0.84)).
With the help of Eq. (17), we obtain

ELICITBM1,1 (EL1,EL2,EL3,EL4)
= 𝜁

(
BM1,1 (0.5, 0.67, 1, 0.34) ,BM1,1 (0.86, 0.98, 1, 0.5) ,
BM1,1 (1, 1, 0.36, 0.67) ,BM1,1 (1, 1, 0.67, 0.84)

)
From Eq. (1), we have

ELICITBM1,1 (EL1,EL2,EL3,EL4)
= 𝜁 (0.35, 0.54, 0.74, 0.87)

By utilizing Eq. (11) with the retranslation steps of ELICIT infor-
mation, we obtain

ELICITBM1,1 (EL1,EL2,EL3,EL4)
= between (s3, –0.28)0.02 and (s4, 0.42)0.04 .

Theorem 2. The ELICIT expressions aggregation operator
ELICITBM satisfies the following properties:

• ELICITBM :n →  is commutative, i.e.,

ELICITBMp,q (EL1,EL2, ...,ELn)
= ELICITBMp,q

(
EL𝜍(1),EL𝜍(2), ...,EL𝜍(n)

)
where EL𝜍(1),EL𝜍(2), ...,EL𝜍(n) is a permutation of the ELICIT
expressions EL1,EL2, ...,ELn.

• ELICITBM :n →  is idempotent, i.e.,

ELICITBMp,q (EL,EL, ...,EL) = EL

• ELICITBM :n →  is ratio-scale invariant, i.e. for any real
number r > 0

ELICITBMp,q (rEL1, rEL2, ..., rELn)
= rELICITBMp,q (EL1,EL2, ...,ELn) .

Proof. Please see Appendix C.2.

Theorem 3. Let EL = (EL1,EL2, ...,ELn) be the collection of
ELICIT expressions and 𝜁–1 (ELi) = (ai, bi, ci, di) (i = 1, 2, ..., n)
be the equivalent fuzzy numbers of the ELICIT expression ELi (i =
1, 2, ..., n). Then the operator ELICITBM :n →  is bounded, i.e.

𝜁
(
min

i
ai,min

i
bi,min

i
ci,min

i
di
)

≤ ELICITBMp,q (EL1,EL2, ...,ELn)
≤ 𝜁

(
max

i
ai,max

i
bi,max

i
ci,max

i
di
)

.

Proof. Please see Appendix C.3.

In the above, we have not considered the weight of the aggregated
ELICIT expressions. But, inmany practical applications, we need to
consider the weight of input arguments in the aggregation process.
In this view, we define the weighted form of ELICITBM as follows:

Definition 19. Let EL = (EL1,EL2, ...,ELn) be the collection of n
ELICIT expressions from  . For any p, q ≥ 0 with p + q > 0, the
ELICITWBM operator is a mapping ELICITWBM :n →  and
defined as follows:

ELICITWBMp,q (EL1,EL2, ...,ELn)

= 𝜁

⎛⎜⎜⎜⎜⎝
1

n (n – 1) ⊕ i, j = 1
i ≠ j

(
wi

(
𝜁–1 (ELi)

)p)⊗
(

wj

1–wi

(
𝜁–1 (ELj))q)

⎞⎟⎟⎟⎟⎠

1
p+q

(18)
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where (w1,w2, ...,wn) be the weights of the input ELICIT expres-
sions and wi > 0 (i = 1, 2, ..., n) with∑m

i=1 wi = 1.
With the operational laws of the fuzzy numbers, we derive the com-
putational formula of the ELICITWBM as follows:

Theorem 4. Let EL = (EL1,EL2, ...,ELn) be the collection of n
ELICIT expressions from  . For any p, q ≥ 0 with p + q > 0, the
aggregated value of ELICIT expressions by ELICITWBM is a ELICIT
expression and given by

ELICITWBMp,q (EL1,EL2, ...,ELn)

= 𝜁

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
n
∑

i, j = 1
j ≠ i

wiwj

1 – wi
api a

q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
n
∑

i, j = 1
j ≠ i

wiwj

1 – wi
bpi b

q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
n
∑

i, j = 1
j ≠ i

wiwj

1 – wi
cpi c

q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
n
∑

i, j = 1
j ≠ i

wiwj

1 – wi
dpi d

q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(19)

where, 𝜁–1 (ELi) = (ai, bi, ci, di) is the equivalent fuzzy number of
the ELICIT expression ELi for all i = 1, 2, ..., n and (w1,w2, ...,wn)
is the weight vector of the inputs and wi > 0 (i = 1, 2, ..., n) with
∑m

i=1 wi = 1.

Proof. It follows in the lines of Theorem 1.

3.2. ELICIT Extended Bonferroni Mean

This section focuses on aggregating ELICIT expressions that are
heterogeneously interrelated in the fashion described in Section 2
and define ELICITEBM operator as follows:

Definition 20. Let EL = (EL1,EL2, ...,ELn) be the collection
of n ELICIT expressions from  such that the input set EL is
heterogeneously interrelated (as described in Section 2). For any
p, q ≥ 0 with p + q > 0, the ELICITEBM operator is a mapping
ELICITEBM :n →  and defined as follows:

ELICITEBMp,q (EL1,EL2, ...,ELn)

= 𝜁
⎛⎜⎜⎝
n – |I′|

)
n

(
1

n – |I′|
) ⊕

i∉I′

(
𝜁–1 (ELi)

)p ⊗(
1
|Ii|

⊕
j∈Ii

(
𝜁–1 (ELj))q )

p
p+q ⊕ |I′|

n

(
1
|I′|

⊕
i∈I′

(
𝜁–1 (ELi)

)p)⎞⎟⎟⎠
1
p

(20)

where empty sum of fuzzy numbers (⊕) is set as fuzzy zero (with
TrFN representation (0, 0, 0, 0)) in the lines of convention of classic
crisp system with (0, 0, 0, 0) /0 = (0, 0, 0, 0).
For the computational purpose, we derive the explicit mathematical
formulae based on the arithmetic operational laws of TrFNs and
ELICIT computational model as follows:

Theorem 5. Let EL = (EL1,EL2, ...,ELn) be the collection of n
ELICIT expressions from  , which are heterogeneously interrelated.
For any p, q ≥ 0 with p + q > 0, the aggregated value of ELICIT
expressions is a ELICIT expression and given by

ELICITEBMp,q (EL1,EL2, ...,ELn)
= 𝜁 (EBM (a1, a2, ..., an) ,EBM (b1, b2, ..., bn) ,

EBM (c1, c2, ..., cn) ,EBM (d1, d2, ..., dn))
(21)

wher, 𝜁–1 (ELi) = (ai, bi, ci, di) is the equivalent fuzzy number of
the ELICIT expression ELi for all i = 1, 2, ..., n and the heteroge-
neous interrelationship structure of ELi′s is inherited into 𝜁–1 (ELi)’s
in component-wise fashion.

It is not difficult to show that ELICITEBM satisfies commu-
tative, idempotency and ratio-scale invariant properties of the
aggregation operator as those properties holds for classic EBM.

Further, it is bounded by 𝜁
(
min

i
ai,min

i
bi,min

i
ci,min

i
di
)

and

𝜁
(
max

i
ai,max

i
bi,max

i
ci,max

i
di
)
. To take into account the rela-

tive importance of the aggregated arguments in the aggregation pro-
cess, we define the weighted form of the ELICITEBM as follows:

Definition 21. Let EL = (EL1,EL2, ...,ELn) be the collection of
n ELICIT expressions from  , which are heterogeneously interre-
lated in the fashion described Section 2. For any p, q ≥ 0 with
p + q > 0 and weight vector w = (w1,w2, ...,wn), such that
wi > 0with∑n

i=1 wi = 1, the ELICITWEBMoperator is amapping
ELICITWEBM :n →  and defined as follows:

ELICITWEBMp,q (EL1,EL2, ...,ELn)

= 𝜁
((

1 – ∑
i∈I′

wi

)(
⊕
i∉I′

wi
1 –∑i∈I′wi

(
𝜁–1 (ELi)

)p⊗
(

1
|Ii|

⊕
j∈Ii

wj

∑j∈I wj

(
𝜁–1 (ELj))q)) p

p+q

⊕
(
∑
i∈I′

wi ⊕
i∈I′

wi

∑i∈I′ wi

(
𝜁–1 (ELi)

)p)) 1
p

(22)

The explicit computational formula of ELICITWEBM could be
obtained by using the arithmetic laws of fuzzy numbers with
ELICIT computational model and summarized in the following:

Theorem 6. Let EL = (EL1,EL2, ...,ELn) be the collection of n
ELICIT expressions from  , which are heterogeneously related. For
any p, q ≥ 0 with p + q > 0 and weight vector w = (w1,w2, ...,wn),
such that wi > 0 and∑n

i=1 wi = 1, the aggregated value of ELICIT
expressions by ELICITWEBM is a ELICIT expression and given by

ELICITWEBMp,q (EL1,EL2, ...,ELn)
= 𝜁 (WEBM (a1, a2, ..., an) ,WEBM (b1, b2, ..., bn) ,
WEBM (c1, c2, ..., cn) ,WEBM (d1, d2, ..., dn))

(23)

where, 𝜁–1 (ELi) = (ai, bi, ci, di) is the equivalent fuzzy number of
the ELICIT expression ELi for all i = 1, 2, ..., n and the heteroge-
neous interrelationship structure of ELi′s is inherited into 𝜁–1 (ELi)’sPdf_Folio:1186
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in component-wise fashion. The WEBM : [0, 1]n → [0, 1] is the
weighted form of EBM aggregation operator, which is given by

WEBMp,q (a1, a2, ...an)

=

⎛⎜⎜⎜⎜⎝
(
1 – ∑

i∈I′
wi

)⎛⎜⎜⎝∑i∉I′
wi

1 –∑
i∈I′

wi
api

⎛⎜⎜⎝
1
|Ii|

∑
j∈Ii

wj

∑
j∈I

wj
aqj
⎞⎟⎟⎠
⎞⎟⎟⎠

p
p+q

⊕∑
i∈I′

wi

⎛⎜⎜⎝∑i∈I′
wi

∑
i∈I′

wi
api
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
p

(24)

3.3. ELICIT Partitioned Bonferroni Mean

In this section, we consider the aggregation of ELICIT expres-
sions, which follows a partitioned structure interrelationship
pattern described in Section 2. Based on the fact in Eq. (4) and Def-
inition 18, we define ELICITPBM operator in the following:

Definition 22. Let EL = (EL1,EL2, ...,ELn) be the collection of
n ELICIT expressions from  such that the input set EL is parti-
tioned into d distinct classesP1,P2,...,Pd (as described in Section 2).
For any p, q ≥ with p + q > 0, the ELICITPBM operator is a map-
ping ELICITPBM :n →  and defined as follows:

ELICITPBMp,q (EL1,EL2, ...,ELn)

= 𝜁
(
1
d

d
⊕
r=1

𝜁–1 (ELCITBM (ELi : i ∈ Pr))
)

(25)

where (ELi : i ∈ Pr) denotes the set of ELICIT expressions ELis that
belong to the partition Pr.

From the Definition 22, we note that by repeated application of
ELICITBM over the partitions of the input set we can obtain the
aggregated value of ELICITPBM. The more explicit computational
formula to find the aggregated value of the ELICICTPBM in terms
of BM is given below:

Theorem 7. Let EL = (EL1,EL2, ...,ELn) be the collection of n
ELICIT expressions from  ,which are partitioned into d classes P1,
P2,..., Pd. For any p, q ≥ 0 with p + q > 0, the aggregated value of
ELICIT expressions is a ELICIT expression and given by

ELICITPBMp,q (EL1,EL2, ...,ELn)

= 𝜁
(
1
d

(
d
∑
r=1

BMp,q (ai : i ∈ Pr) ,
d
∑
r=1

BMp,q (bi : i ∈ Pr) ,

d
∑
r=1

BMp,q (ci : i ∈ Pr) ,
d
∑
r=1

BM (di : i ∈ Pr)

)) (26)

where, 𝜁–1 (ELi) = (ai, bi, ci, di) is the equivalent fuzzy number of
the ELICIT expression ELi for all i = 1, 2, ..., n and the partitioned
structure interrelationship of ELi′s is inherited into 𝜁–1 (ELi)’s in
component-wise fashion.

As the ELICITPBM operator is composed of a set of ELICITBM
operators with different dimensions, we can easily exhibit that the

ELICITPBMoperator satisfies commutative, idempotent and ratio-
scale invariant properties with help of Theorem 2. Further, the
ELCITPBM operator is bounded as follows:

𝜁
(
min

i
ai,min

i
bi,min

i
ci,min

i
di
)

≤ ELICITPBMp,q (EL1,EL2, ...,ELn)
≤ 𝜁

(
max

i
ai,max

i
bi,max

i
ci,max

i
di
)

.

When the inputs ELICIT expressions have different relative impor-
tance, we need to take account it in the aggregation process and to
reflect on the aggregated value. In this view, the weighted form of
the ELICITPBM can be defined as follows:

Definition 23. Let EL = (EL1,EL2, ...,ELn) be the collection
of n ELICIT expressions from  such that the input set EL is
partitioned into d distinct classes P1, P2, ..., Pd (as described in
Section 2). For any p, q ≥ 0 with p + q > 0 and weight vector
w = (w1,w2, ...,wn), such that wi > 0 and ∑n

i=1 wi = 1, the
ELICITWPBMoperator is amappingELICITWPBM :n →  and
defined as follows:

ELICITWPBMp,q (EL1,EL2, ...,ELn)

= 𝜁
(
1
d

d
⊕
r=1

𝜁–1 (ELCITWBM (ELi ∈ Pr))
)

(27)

where (ELi : i ∈ Pr) denotes the set of ELICIT expressions ELis that
belong to the partition Pr.

Theorem 8. Let EL = (EL1,EL2, ...,ELn) be the collection of n
ELICIT expressions from  . For any p, q ≥ 0 with p + q > 0
and weight vector w = (w1,w2, ...,wn), such that wi > 0 and
∑n

i=1 wi = 1, the aggregated value of ELICIT expressions by ELIC-
ITWPBM is a ELICIT expression and given by

ELICITWPBMp,q (EL1,EL2, ...,ELn)

= 𝜁
(
1
d

(
d
∑
r=1

WBMp,q (ai : i ∈ Pr) ,
d
∑
r=1

WBMp,q (bi : i ∈ Pr) ,

d
∑
r=1

WBMp,q (ci : i ∈ Pr) ,
d
∑
r=1

WBMp,q (di : i ∈ Pr)

))
(28)

where 𝜁–1 (ELi) = (ai, bi, ci, di) is the equivalent fuzzy number of the
ELICIT expression ELi for all i = 1, 2, ..., n and

WBMp,q (ai : i ∈ Pr) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

i, j ∈ Pr
j ≠ i

wiwj

(
∑i∈Pr

wi

) ⎛⎜⎜⎜⎝∑ j ∈ Pr
j ≠ i

wj

⎞⎟⎟⎟⎠
api a

q
j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
p+q

4. APPROACHES TO MADM WITH ELICIT
ASSESSMENTS

In this section, we develop an approach based on ELICIT expres-
sions aggregation operators to solve MADM problem in whichPdf_Folio:1187



1188 B. Dutta et al. / International Journal of Computational Intelligence Systems 12(2) 1179–1196

attributes follow a typical interrelationship pattern, and the decision
maker provides his/her assessments by using CLEs and/or ELICIT
expressions.

We consider a typical MADM problem, where a finite set of alter-
natives are evaluated against a predefined set of performance mea-
suring attributes in the aim of ranking the alternatives from best to
worst on their suitability. In such a decision-making problem two
pieces of information are required to find the ranking of the alterna-
tives. One is assessment information of the alternatives against the
criteria, which we often refer to as decision information. Another
one is related to the relative importance of the criteria that is
referred to as weight information. Mathematically, we can describe
the MADM problem with all the relevant information as follows:

• A finite set of m (≥ 2) alternatives: X = {Xi|i ∈ I}, where
I = {1, 2, ...,m}

• A fixed set of criteria: A = {Aj|j ∈ J} where J = {1, 2, ..., n}
• The weight vector of the criteria: w = (w1,w2, ...,wn) such that

wj ≥ 0 and∑n
j=1 wj = 1.

• The alternatives are assessed over criteria and evaluations are
summarized in the following decision matrix:

A1 A2 ⋯ An

D =
X1
X2
⋮
Xm

⎛⎜⎜⎜⎝
EL11 EL12 ⋯ EL1n
EL21 EL22 ⋯ EL2n
⋮ ⋮ ⋯ ⋮
ELm1 ELm2 ⋯ ELmn

⎞⎟⎟⎟⎠
where ELij is the ELICIT expression that has been obtained
from the decision maker’s linguistic opinions to provide his/her
assessment for the alternative Xi against the criteria Aj.
Specifically, decision maker uses CLEs to express his/her
assessments against the alternatives under different attributes.

Apart from these binding pieces of information, the decisionmaker
needs to provide the typical pattern of the interrelationship among
the attributes. As interrelationship is vital in the selection of an
appropriate aggregation operator, this information is crucial to
make a reliable decision.

WEBMp,q (a1, a2, ...an)

=

⎛⎜⎜⎜⎜⎝
(
1 – ∑

s∈I′
ws

)⎛⎜⎜⎝∑s∉I′
ws

1 –∑
s∈I′

ws
apis

⎛⎜⎜⎝
1
|Is|

∑
t∈Is

wt

∑
t∈Is

wj
aqit
⎞⎟⎟⎠
⎞⎟⎟⎠

p
p+q

+∑
s∈I′

ws

⎛⎜⎜⎝∑s∈I′
ws

∑
s∈I′

ws
apis
⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠

1
p

(29)

With this available information in hand, we intend to design an
algorithm based on the aggregation operators, developed in the
previous section, to find the most desirable alternative(s) from the
alternatives’ pool {X1,X2, ...,Xm}. Our proposed algorithm takes
following steps to find ranking order of the alternatives:

Step 1

Give the decision maker’s preference summarized in the decision
matrixD =

(
ELij

)
m×n

andweight informationw = (w1,w2, ...,wn).

Step 2

Provide the interrelationship patter among the attributes, i.e.,
whether, the attributes follows homogeneous interrelationship pat-
tern, heterogeneously interrelation patter or partitioned structured
interrelationship pattern. In the cases of heterogeneous and parti-
tioned interrelationship, specific structure of interrelationship data
need to be provided.

Step 3

Based on the interrelationship pattern, the suitable aggregation
operator is selected to obtain the overall performance of the alterna-
tive Xi from the alternative’s individual performances under differ-
ent attributes Eij

(
j = 1, 2, ..., n

)
. Specifically, three scenarios arise

here:

• attributes are homogeneously related in this case, we utilize
ELICITBM operator to find the alternatives Xi overall
performance ri (i = 1, 2, ...,m) as follows:

ri = ELICITBM (ELi1,ELi2, ...,ELin)

= 𝜁

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
n
∑

s, t = 1
t ≠ s

wswt
1 – ws

apisa
q
it

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
n
∑

s, t = 1
t ≠ s

wswt
1 – ws

bpisb
q
it

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
n
∑

s, t = 1
t ≠ s

wswt
1 – ws

cptsc
q
it

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
n
∑

s, t = 1
t ≠ s

wswt
1 – ws

dpisd
q
it

⎞⎟⎟⎟⎟⎟⎠

1
p+q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(30)

where 𝜁–1 (ELij) = (
aij, bij, cij, dij

)
is the equivalent fuzzy

number of the ELICIT expression ELij for all i = 1, 2, ...,m.

• attributes are heterogeneously interrelated, in this case, we
employ ELCITWEBM operator to obtain overall performance
ri of the alternative Xi as follows:

ELICITWEBMp,q (ELi1,ELi2, ...,ELin)
= 𝜁 (WEBM (ai1, ai2, ..., ain) ,
WEBM (bi1, bi2, ..., bin) ,
WEBM (ci1, ci2, ..., cin) ,
WEBM (di1, di2, ..., din))

(31)

where, 𝜁–1 (ELij) = (
aij, bij, cij, dij

)
is the equivalent fuzzy

number of the ELICIT expression ELij for all j = 1, 2, ..., n and
WEBM (ai1, ai2, ..., ain) is given by Eq. (29).Pdf_Folio:1188
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• attributes are partitioned structured, in this case, WELCITPBM
operator is utilized to obtain overall performance ri of the
alternative Xi as follows:

ri = WELICITPBM (ELi1,ELi2, ...,ELin)

= 𝜁
(
1
d

(
d
∑
r=1

WBM
(
aij ∈ Pr

)
,

d
∑
r=1

WBM
(
bij : j ∈ Pr

)
,

d
∑
r=1

WBM
(
cij : j ∈ Pr

)
,

d
∑
r=1

WBM
(
dij : j ∈ Pr

)))
(32)

where, 𝜁–1 (ELi) =
(
aij, bij, cij, dij

)
is the equivalent fuzzy

number of the ELICIT expression ELij for all j = 1, 2, ..., n and

WBM
(
aij : j ∈ Pr

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k, j ∈ Pr
j ≠ k

wkwj

(
∑k∈Pr

wk

) ⎛⎜⎜⎜⎝∑ j ∈ Pr
j ≠ k

wj

⎞⎟⎟⎟⎠
apka

q
j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
p+q

Step 4

The overall performance of the alternatives ri (i = 1, 2, ...,m) are
ELICIT expressions. To facilitate the comparisons, we first trans-
formed them into fuzzy numbers Tri = 𝜁–1 (ri) = (ti1, ti2, ti3, ti4)
for i = 1, 2, ...,m and then defuzzified them into real num-
ber Mag

(
Tri

)
(i = 1, 2, ...,m) by using the approach proposed by

Abbasbandy and Hajri [44].

Step 5

Based on the Mag
(
Tri

)
(i = 1, 2, ...,m), we rank the alternatives

Xi (i = 1, 2, ...,m) in the sense that better the magnitude, better the
rank.

5. PRACTICAL EXAMPLE

In this section, we provide a practical example to demonstrate the
working and feasibility of the proposed decision-making algorithm.

In the face of a trade war, a major company is considering to
shift its manufacturing plant from the current location. After, ini-
tial screening the company has identified five possible locations
around the world to step up the newmanufacturing plant.We name
this potential locations as {X1,X2,X3,X4,X5}. To prioritize fur-
ther these locations, the company has identified seven assessment
attributes: market (A1), business climate (A2), labour characteristic
(A3), infrastructure (A4), availability of raw materials (A5), invest-
ment cost (A6) and possibility for the further extensions (A7). These
performance measuring attributes have some intrinsic connection-
s/interrelations and that could be described as follows: A1 is inter-
related with A4; A2 with {A6,A7}; A3 with A7; A4 with {A1,A6}; A5

with A7; A6 with {A2,A4} and A7 with {A3,A5}. The information
regarding the attributes for all possible options are collected and
presented to the key managerial responsible for taking a decision.

Due to the presence of vagueness and uncertainty, the decision
maker uses linguistic information to assess the locations against the
attributes. According to the expertise of the decision maker, a lin-
guistic term set with 7 labels is provided, S = {s0: unfeasible (UF),
s1: very unsuitable (VUS), s2: unsuitable (US), s3: fair (F), s4: suitable
(S), s5: very suitable (VS), s6: excellent (E)}.

Decision maker uses a single linguistic term or complex linguis-
tic expression, modeled by CLEs to rate the alternatives against
the attributes. The decision maker’s preferences are represented by
CLEs (Table 1 Rating in CLEs) that are transformed into ELICIT
information and modeled by the decision matrix D and presented
as follows:

A1 A2

D =

X1
X2
X3
X4
X5

⎛⎜⎜⎜⎜⎜⎝

at least (s4, 0)0 at least (s5, 0)0
atmost (s1, 0)0 (s3, 0)0
(s5, 0)0 at least (s5, 0)0
(s0, 0)0 (s0, 0)0
(s6, 0)0 (s3, 0)0

A3 A4 A5
(s4, 0)0 (s4, 0)0 at least (s3, 0)0
bt (s3, 0)0 and (s4, 0)0 bt (s0, 0)0 and (s1, 0)0 at least (s3, 0)0
(s4, 0)0 (s5, 0)0 bt (s2, 0)0 and (s3, 0)0
(s1, 0)0 bt (s3, 0)0 and (s4, 0)0 atmost (s2, 0)0
(s6, 0)0 at least (s4, 0)0 (s2, 0)0

A6 A7
at least (s4, 0)0 bt (s3, 0)0 and (s4, 0)0
(s3, 0)0 (s3, 0)0
atmost (s3, 0)0 (s3, 0)0
(s3, 0)0 (s2, 0)0
bt (s4, 0)0 and (s5, 0)0 (s5, 0)0

⎞⎟⎟⎟⎟⎟⎠
A1 A2

D =

X1
X2
X3
X4
X5

⎛⎜⎜⎜⎜⎝
T (0.5, 0.86, 1, 1) T (0.67, 0.98, 1, 1)
T (0, 0, 0.03, 0.34) T (0.34, 0.5, 0.67)
T (0.67, 0.84, 1) T (0.67, 0.98, 1, 1)
T (0, 0, 0.17) T (0, 0, 0.17)
T (0.84, 1, 1) T (0.34, 0.5, 0.67)
A3 A4 A5

T (0.5, 0.67, 0.84) T (0.5, 0.67, 0.84) T (0.34, 0.64, 1, 1)
T (0.34, 0.5, 0.67, 0.84) T (0, 0, 0.17, 0.34) T (0.34, 0.65, 1, 1)
T (0.5, 0.67, 0.84) T (0.67, 0.84, 1) T (0.17, 0.34, 0.5, 0.67)
T (0.67, 0.84, 1) T (0.4, 0.5, 0.67, 0.84) T (0, 0, 0.15, 0.5)
T (0.84, 1, 1) T (0.5, 0.84, 1, 1) T (0.17, 0.34, 0.5)

A6 A7
T (0.5, 0.86, 1, 1) T (0.34, 0.5, 0.67, 0.84)
T (0.34, 0.5, 0.67) T (0.34, 0.5, 0.67)
T (0, 0, 0.36, 0.67) T (0.34, 0.5, 0.67)
T (0.34, 0.5, 067) T (0.17, 0.34, 0.5)
T (0.5, 0.67, 0.84, 1) T (0.67, 0.84, 1)

⎞⎟⎟⎟⎟⎠
Further all performance measuring attributes are not equally
important. To take into account the variation in relativePdf_Folio:1189
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importance of the attributes, weight information is set as
w = (0.2, 0.1, 0.15, 0.15, 0.2, 0.1, 0.1).
With this available information about the locations’ choices prob-
lem, we employ the proposed decision-making algorithm to prior-
itize the locations and to find the most suitable one.

Step 1

To carry out the linguistic computations, all the ELICIT expres-
sions are required to transform into machine manipulative format,
i.e., TrFNs. Decision maker’s opinions in terms of ELICIT expres-
sions given in D are converted into TrFNs and summarized in the
matrix D and given in the previous page, where the first entry of
D, T (0.5, 0.86, 1, 1) is the equivalent TrFN corresponding to the
ELICIT expression at least (s4, 0)0, i.e., 𝜁–1

(
at least (s4, 0)0

)
=

T (0.5, 0.86, 1, 1).

Step 2

From the description of the attributes interrelationship pattern, it is
quite evident that the attributes are heterogeneously related with no
independent arguments. In the aim of capturing this heterogeneous
interaction among the attributes and its reflection in the aggre-
gated value, we choose ELICITWEBM (Eq. 29), to compute the
overall performance of the alternatives. We set the associated
parameter p and q to 1 in ELICITWEBM and compute the overall
performance with the translated information D and weight infor-
mation w. The results are summarized in the following Table 2.
From Table 2 decision maker obtains the overall performance of
alternatives expressed in terms of linguistic ELICIT expressions,
which is quite intuitive to interpret. It is also clear to the decision
maker from the Table 2 that X3 is better than {X2,X4} and X2 is
better than X4. Undoubtedly, X1 and X5 are better than rest of the
alternatives but it is not very clear about the order of the X1 and X5
from the linguistic overall performances. We are going to the next
step for finding the exact ranking order of the alternatives.

Step 3

From the overall performances ri (i = 1, 2, 3, 4, 5), we compute
the magnitude of the corresponding TrFNs, Tri (i = 1, 2, 3, 4, 5) of
the ri as follows: Mag

(
Tr1

)
= 0.7416, Mag

(
Tr2

)
= 0.4486,

Mag
(
Tr3

)
= 0.6242, Mag

(
Tr4

)
= 00.3144 and Mag

(
Tr5

)
=

0.7928. Based on theMag
(
Tri

)
(i = 1, 2, 3, 4, 5), the ranking of the

alternatives are as follows: X5 ≻ X1 ≻ X3 ≻ X2 ≻ X4. Hence the
location X5 is the most suitable to set up the manufacturing plant
followed by location X1.

In the above analysis, we have set the parameters associated with
ELICITWEBM as

(
p, q

)
= (1, 1). But this choice of the param-

eters p and q associated with ELICITWEBM may have an impact
on the final ranking of the locations. Thus, it is necessary to check
the robustness of the ranking result concerning the parameters.
For this purpose, we adopt the simulation-based approach, specifi-
cally, the framework of stochastic multi-criteria acceptability anal-
ysis [45]. As there is no preference over the parameters’ values,
we assume that the parameters are uniformly distributed in the
space [0.1, 100]2. By randomly drawing the parameters from the
space [0.1, 100]2, we solve the decision-making problem and find
the ranking of the locations. Further, repeating this process for the
sufficient numbers of times (10, 000) within Monte Carlo frame-
work, we collect the evidence in terms of probability of occupying
a ranking position by an alternative. We report the result of the
Monte Carlo in the Table 3, where br corresponding the alternative
Xi denotes the probability of occupying r-th ranking position by Xi.
It is quite evident that for the almost all configuration of the param-
eters from the space [0.1, 100]2, the X5 occupied the first ranking
positions followed by X1. Unanimously, X3 is always occupied the
third-ranking positions followed by X2 and X4. But there is a pos-
sibility of switching the ranking position between X2 and X4 for
some configurations of the parameters. In nutshell, we can conclude
that present ranking results are robust and not much sensitive to
the parameters. Note that the exact estimation of the appropriate
parameters associated with ELICITEBM could also be stem from
the decision maker’s perceived view towards aggregation process
[22,46].

Table 1 Alternatives rating under different criteria.

A1 A2 A3 A4 A5 A6 A7
X1 at least S at least VS S S at least F at least S bt F and S
X2 at most VUS F bt F and S bt UF and VUS at least F F F
X3 VS at least VS S VS bt US and F at most F F
X4 UF UF VUS bt F and S at most US F US
X5 E F E at least S US bt S and VS VS
bt = between.

Table 2 Alternatives overall performance.

Alternative Tri (TrFN) ri = 𝜁–1
(
Tri

)
X1 T (0.4545, 0.6963, 0.8106, 0.9102) between

(
s4, 0.1758

)–0.0455 and (s5, –0.1362)–0.0898
X2 T (0.2612, 0.4084, 0.4889, 0.6351) between

(
s2, 0.4524

)0.0942 and (s3, –0.0666)0.1351
X3 T (0.4401, 0.5869, 0.6567, 0.8315) between

(
s4, –0.4806

)–0.0599 and (s4, –0.0618)–0.0015
X4 T (0.1862, 0.2874, 0.3241, 0.5291) between

(
s2, –0.2736

)0.0192 and (s2, –0.0540)0.0291
X5 T (0.5639, 0.7797, 0.8286, 0.9084) between

(
s5, –0.3198

)–0.1031 and (s5, –0.0264)–0.0916
Pdf_Folio:1190
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Table 3 Percentage of occupying different ranking positions by
alternatives.

Alternative b1 b2 b3 b4 b5

X1 0.0040 99.9960 0 0 0
X2 0 0 0 88.7300 11.2700
X3 0 0 100 0 0
X4 0 0 0 11.2700 88.7300
X5 99.9960 0.0040 0 0 0

As we have emphasized on the fact that capturing the underlying
interrelationship pattern in the aggregated ELICIT information is
vital to make a reliable decision, it is worthy here to investigate
the consequence if we do not consider the interrelationship in the
information fusion process. For this purpose, we use the weighted
ELICIT arithmetic mean operators, which assume that the input
arguments are independent, in place of ELICITWBM in the pro-
posed decision-making algorithm to compute the overall perfor-
mances of the alternatives. Rest of the steps in our proposedMADM
algorithm to find the ranking of the alternatives is kept unaltered.
With this new configuration of the algorithm,we re-execute the step
of the MADM algorithms and found the following ranking order
of the alternatives X1 ≻ X5 ≻ X3 ≻ X2 ≻ X4. It is evident
that the ranking positions for X1 and X5 are reversed, which due to
not capturing the underlying interrelationship structure among the
attributes.

6. CONCLUSION

In this study, we have investigated the aggregation of linguis-
tic information that is represented by ELICIT expressions and
followed some specific interrelationship patterns. Specifically, we
have considered three types of interrelationship patterns, namely,
heterogeneous, homogeneous and partition structure among the
aggregated arguments and such relationships are captured via direct
conjunctions among the aggregated arguments with the core of
three classical aggregation operators: BM, EBM, and PBM. In
this view, we have extended these classical operators in ELICIT
information environment and developed three new aggregation
operators for aggregation ELICIT expressions, which we have
referred to as ELICITBM, ELICITEBM, and ELICITPBM. Fur-
thermore, we have investigated the properties of these aggrega-
tion operators and proposed the weighted form of these aggre-
gation operators to deal with the situations where inputs have
different relative importance. Using these aggregation opera-
tors as an information fusion tool, an algorithm for solving
the MADM problems, in which attributes follow some specific
interrelationship patterns, has been develped. Finally, we have
presented numerical examples to illustrate the feasibility and appli-
cability of our proposed approach.

In the future, it would be interesting to investigate the more com-
plex interaction among the ELICIT expressions via Choquet inte-
gral [47]. Further, one may consider extending the aggregation of
ELICIT expressions for other class of averaging aggregation opera-
tors, such as ordered weighted average operators [48] , power aver-
aging operator [49], prioritize aggregation operator [50] and their
different variants.
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APPENDIX A

A.1 ELICIT Inverse Function Example

In order to facilitate the understanding of the inverse function, 𝜁–1,
for ELICIT information, let us suppose a linguistic term set with
seven labels, S = {s0 : horrible, s1 : very bad, s2 : bad, s3 : medium, s4 :
good, s5 : very good, s6 : perfect } and an ELICIT expression between
(s3, 0.432)0.024 and (s4, 0.144)–0.023 (see Figure A.1).

First, it is necessary to compute the fuzzy envelope [18] of the
ELICIT expression. To do that, the HFLTS of the expression is
obtained through the transformation function defined in [21]:

EELICIT
(
between (si, 𝛼) and

(
sj, 𝛼

))
=

{sk| (si, 𝛼) and
(
sj, 𝛼

)
and si < sk < sj where sk ∈ S}

For our example:

EELICIT (between (s3, 0.432) and (s4, 0.144)) =
{sk| (s3, 0.43) and (s4, 0.14) and s3 < sk < s4
where sk ∈ S} = {(s3, 0.432) , (s4, 0.144)}

Once the HFLTS is computed, the different fuzzy memberships
functions of the linguistic terms that belong to theHFLTS are aggre-
gated with the OWA operator [48]. The OWA operator assigns dif-
ferent importance to the linguistic terms that compose the HFLTS
through the orness measure thus, the way of computing the OWA
weights affect directly to the resulting fuzzy envelopes. This process
is carried out in [21] by means of a parameter, noted as 𝜖 ∈ [0, 1],
which allows modifying the way to compute the OWA weights. The
variation of 𝜖modifies the importance of the linguistic terms of the
HFLTS, in order to reduce the interval whose height is 1 in the fuzzy
envelope. In [21], several fixed orness values provided by 𝜖 are used
in order to compute fuzzy envelopes that preserve as much infor-
mation as possible. The fixed values of 𝜖 are: 𝜖 = 0 for at least rela-
tions, 𝜖 = 1 for at most relations and 𝜖1 = 0 and 𝜖2 = 1 for between
relations. Following this process, the resulting fuzzy envelope for
the ELICIT expression is T (0.405, 0.572, 0.691, 0.857).
Finally, the corresponding TrFN of the respective ELICIT expres-
sion is obtained by applying Prop. 16:

𝜁–1
(
between (s3, 0.432)0.024 and (s4, 0.144)–0.023

)
= T (0.429, 0.572, 0.691, 0.834)
a = 0.405 + 0.024 = 0.429
b = 0.572
c = 0.691
d = 0.857 + (–0.023) = 0.834

(A.1)

Figure A.1 Extended Comparative
LInguistiC Expressions with SymbolIc
Translation (ELICIT) information examples.

APPENDIX B

B.1 ELICIT Retranslation Process Example

In order to facilitate the understanding of the retranslation process
to obtain an ELICIT expression from a TrFN, let us suppose the
TrFN computed inA.1, ̃𝛽 = T (0.429, 0.572, 0.691, 0.834). The pro-
cess to obtain an ELICIT expression is composed by several steps:

1. Identify relation: The relation of the ELICIT expression is deter-
mined by the fuzzy number ̃𝛽 = T (0.429, 0.572, 0.691, 0.834)
and the 𝜁 function (see Eq. 11).

𝜁 (T (0.429, 0.572, 0.691, 0.834)) = EL,

where
⎧⎪
⎨⎪
⎩

EL = at least (si, 𝛼)𝛾 if ̃𝛽 = T (a, b, 1, 1)
EL = atmost (si, 𝛼)𝛾 if ̃𝛽 = T (0, 0, c, d)
EL = between (si, 𝛼1)𝛾1 and

(
sj, 𝛼2

)𝛾2
if ̃𝛽 = T (a, b, c, d)

(B.1)

According to the fuzzy number ̃𝛽, the relation of the ELICIT
expression is “between”.

2. 2-tuple linguistic terms computation (see Figure B.1): The
ELICIT expression with the relation “between” is composed by
two continuous terms, (si, 𝛼1)𝛾1 and

(
sj, 𝛼2

)𝛾2 .
(a) Compute linguistic terms: First, we select the linguistic

terms si and sj ∈ S, i, j ∈ {0, 1, 2, 3, 4, 5, 6}, whose dis-
tance between the coordinates x of their respective cen-
troids [42], xi and xj, and the points b = 0.572 and
c = 0.691 belonging to ̃𝛽 is minimal. In this case, such
centroids are x3 and x4:

i = arg min
h∈{0,1,2,3,4,5,6}

||0.572 – xh|| = 3

j = arg min
h∈{0,1,2,3,4,5,6}

||0.691 – xh|| = 4

(B.2)

The ELICIT expression so far is “between (s3, ?)? and
(s4, ?)?.”

(b) Compute symbolic translations: Once the linguistic terms
have been selected, the symbolic translations of the con-
tinuous terms are computed as follows:

𝛼1 = 6 ⋅ (0.57 – 0.5) = 0.432
𝛼2 = 6 ⋅ (0.691 – 0.667) = 0.144
𝛼1, 𝛼2 ∈ [–0.5, 0.5) ,

(B.3)

The ELICIT expression so far is “between (s3, 0.432)? and
(s4, 0.144)?.”

Figure B.1 Select linguistic terms.
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Figure B.2 Extended Comparative LInguistiC
Expressions with SymbolIc Translation (ELICIT)
fuzzy envelope.

3. Compute adjustments: Finally, to complete the ELICIT expres-
sion, we compute the adjustments for the ELICIT expression
following the steps below:
(a) Compute HFLTS:

EELICIT (between (s3, 0.432) and (s4, 0.144))
= {sk| (s3, 0.432) and (s4, 0.144) and

s3 < sk < s4 where sk ∈ S}
= {(s3, 0.432) , (s4, 0.144)}

(b) Compute fuzzy envelope (see Figure B.2): The fuzzy enve-
lope [18] of the HFLTS {(s3, 0.432) , (s4, 0.144)} is:

TELICIT = T (0.405, 0.572, 0.691, 0.857)

(c) Compute adjustments 𝛾1 and 𝛾2:

𝛾1 = 0.429 – 0.405 = 0.024
𝛾2 = 0.834 – 0.857 = –0.023
gamma1, 𝛾2 ∈ [0, 1]

(B.4)

Finally, the ELICIT expression is completed “between
(s3, 0.432)0.024 and (s4, 0.144)–0.023.”

APPENDIX C

C.1 Proof of Theorem 1

By using operational laws of fuzzy numbers, we have

(
𝜁–1 (ELi)

)p ⊗ (
𝜁–1 (ELj))q = (

api a
q
j , b

p
i b

q
j , c

p
i c

q
j , d

p
i d

q
j

)
(C.1)

Clearly, the right-hand side of Eq. (C.1) is a TrFNdue to the assump-
tion 0 ≤ ai ≤ bi ≤ ci ≤ di (i = 1, 2, ..., n) on the parame-
ters of the envelope of ELICIT expression 𝜁–1 (ELi). Further the
Eq. (C.1) is true for any pair of ELICIT expressions

(
ELi,ELj

)(
i, j ∈ {1, 2, ..., n}

)
. As the addition of TrFNs is associative, we

can extend easily to the addition of n (n – 1) TrFNs of the form(
𝜁–1 (ELi)

)p ⊗ (
𝜁–1 (ELj))q (i, j ∈ {1, 2, ..., n} , i ≠ j

)
and obtain

⊕
i, j = 1
i ≠ j

(
𝜁–1 (ELi)

)p ⊗ (
𝜁–1 (ELj))q

=

⎛⎜⎜⎜⎜⎜⎝
n
∑

i, j = 1
j ≠ i

api a
q
j ,

n
∑

i, j = 1
j ≠ i

bpi b
q
j ,

n
∑

i, j = 1
j ≠ i

cpi c
q
j ,

n
∑

i, j = 1
j ≠ i

dpi d
q
j

⎞⎟⎟⎟⎟⎟⎠
(C.2)

With the help of scalar multiplication laws of TrFNs, we get

1
n (n – 1) ⊕

i, j = 1
i ≠ j

(
𝜁–1 (ELi)

)p ⊗ (
𝜁–1 (ELj))q

=

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

api a
q
j ,

1
n (n – 1)

n
∑

i, j = 1
j ≠ i

bpi b
q
j ,

1
n (n – 1)

n
∑

i, j = 1
j ≠ i

cpi c
q
j ,

1
n (n – 1)

n
∑

i, j = 1
j ≠ i

dpi d
q
j

⎞⎟⎟⎟⎟⎟⎠

(C.3)

Finally by using exponential operational laws of TrFN from Eq.
(C.3), we obtain

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1) ⊕
i, j = 1
i ≠ j

(
𝜁–1 (ELi)

)p ⊗ (
𝜁–1 (ELj))q

⎞⎟⎟⎟⎟⎟⎠

1
p+q

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

api a
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

bpi b
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

cpi c
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

,

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

dpi d
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(C.4)

Since ai ≤ bi ≤ ci ≤ di for all i = 1, 2, ..., n, the monotonocity
property of the BMp,q : [0, 1]n → [0, 1] implies Eq. (C.5).
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⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

api a
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

≤

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

bpi b
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

≤

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

cpi c
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

≤

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n
∑

i, j = 1
j ≠ i

dpi d
q
j

⎞⎟⎟⎟⎟⎟⎠

1
p+q

(C.5)

ELICITBMp,q
(
EL𝜍(1),EL𝜍(2), ...,EL𝜍(n)

)
= 𝜁

(
BMp,q

(
a𝜍(1), a𝜍(2), ..., a𝜍(n)

)
, BMp,q

(
b𝜍(1), b𝜍(2), ..., b𝜍(n)

)
,

BMp,q
(
c𝜍(1), c𝜍(2), ..., c𝜍(n)

)
,BMp,q

(
d𝜍(1), d𝜍(2), ..., d𝜍(n)

))
(C.6)

It infers that
⎛⎜⎜⎜⎝

1
n(n–1) ⊕ i, j = 1

i ≠ j

(
𝜁–1 (ELi)

)p ⊗ (
𝜁–1 (ELj))q⎞⎟⎟⎟⎠

1
p+q

is

TrFN and therefore ELICITBMp,q (EL1,EL2, ...,ELn) is an ELICIT
expression. Hence the results.

C.2 Proof of Theorem 2

(i) First we will show that ELICITBM is commutative. Let
EL𝜍(1),EL𝜍(2), ...,EL𝜍(n) is a permutation of the ELICIT expressions
EL1,EL2, ...,ELn. With the help of computational formula Eq. (17),
we can express ELICITBM

(
EL𝜍(1),EL𝜍(2), ...,EL𝜍(n)

)
in the form of

Eq. (C.6)

The values of the parameters p and q, and the underlying inter-
relationship structure among the aggregated ELICIT expressions
remain intact in the permutation

(
EL𝜍(1),EL𝜍(2), ...,EL𝜍(n)

)
. Fur-

ther such interrelationship is also inherited in the parameters of the
TrFNs

((
a𝜍(i), b𝜍(i), c𝜍(i), d𝜍(i)

)
(i = 1, 2, ..., n) , which are the enve-

lope of the ELICIT expression EL𝜍(i), (i = 1, 2, ..., n). Thus, the
components of the envelopes of EL𝜍(i), (i = 1, 2, ..., n) become con-
nected. Under this circumstance, BM exhibits the commutative
property, i.e.,

BMp,q
(
a𝜍(1), a𝜍(2), ..., a𝜍(n)

)
= BMp,q (a1, a2, ..., an)

It follows that

ELICITBMp,q
(
EL𝜍(1),EL𝜍(2), ...,EL𝜍(n)

)
= 𝜁

(
BMp,q (a1, a2, ..., an) ,BMp,q (b1, b2, ..., bn) ,

BMp,q (c1, c2, ..., cn) ,BMp,q (d1, d2, ..., dn)
)

= ELICITBMp,q (EL1,EL2, ...,ELn)
(C.7)

(ii) Now we will show that ELICITBM operator is idempotent. Let
𝜁–1 (EL) = (a, b, c, d) be the envelope of the ELICIT expression EL.
From the Eq. (17), we have

ELICITBMp,q (EL,EL, ...,EL)
= 𝜁

(
BMp,q (a, a, ..., a) ,BMp,q (b, b, ..., b) ,

BMp,q (c, c, ..., c) ,BMp,q (d, d, ..., d)
)

(C.8)

Since the BM operator is idempotent, i.e., BMp,q (e, e, ..., e) = e, we
obtain from Eq. (C.8)

ELICITBMp,q (EL,EL, ...,EL) = 𝜁 (a, b, c, d) = 𝜁
(
𝜁–1 (EL)

)
= EL

(iii) Now we will prove that ELICITBM is ratio-scale invariant. Let
r > 0 be a scalar. From the scalar multiplication law of TrFN, we
have r𝜁–1 (ELi) = (rai, rbi, rci, rdi). From the definition of ELIC-
ITBM, we obtain

ELICITBMp,q (rEL1, rEL2, ..., rELn)

=

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1) ⊕
i, j = 1
i ≠ j

(
𝜁–1 (rELi)

)p ⊗ (
𝜁–1 (rELj))q

⎞⎟⎟⎟⎟⎟⎠

1
p+q

= 𝜁
(
BMp,q (ra1, ra2, ..., ran) ,BMp,q (rb1, rb2, ..., rbn) ,

BMp,q (rc1, rc2, ..., rcn) ,BMp,q (rd1, rd2, ..., rdn)
)

(C.9)

As the BM operator is ratio-scale invariant i.e.
BMp,q (re1, re2, ..., ren) = rBMp,q (e1, e2, ..., en), from Eq. (C.9) we
have

ELICITBMp,q (rEL1, rEL2, ..., rELn)
= 𝜁

(
rBMp,q (a1, a2, ..., an) , rBMp,q (b1, b2, ..., bn) ,

rBMp,q (c1, c2, ..., cn) , rBMp,q (d1, d2, ..., dn)
)

= r𝜁
(
BMp,q (a1, a2, ..., an) ,BMp,q (b1, b2, ..., bn) ,

BMp,q (c1, c2, ..., cn) ,BMp,q (d1, d2, ..., dn)
)

= rELICITBMp,q (EL1,EL2, ...,ELn)

C.3 Proof of the Theorem 3

We will show that ELICITBM is bounded. Since ai ≥ mini ai for
all i, the monotonocity and idempotency of properties of the BM
operator implies that

BMp,q (a1, a2, ..., an) ≥ BM
(
min

i
ai,min

i
ai, ...,min

i
ai
)
= min

i
ai

Similarly, we can obtain

BMp,q (b1, b2, ..., bn) ≥ min
i

bi
BMp,q (c1, c2, ..., cn) ≥ min

i
ci

BMp,q (d1, d2, ..., dn) ≥ min
i

di.

From these inequalities, we have(
BMp,q (a1, a2, ..., an) ,BMp,q (b1, b2, ..., bn) ,

BMp,q (c1, c2, ..., cn) ,BMp,q (d1, d2, ..., dn)
)

≥
(
min

i
ai,min

i
bi,min

i
ci,min

i
di
) (C.10)
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Note that the inequality Eq. (C.10) is in the sense of lexicographic
ordering of TrFNs, i.e., (a1, b1, c1, d1) ≥ (a2, b2, c2, d2) iff a1 ≥ a2,
b1 ≥ b2, c1 ≥ c2 and d1 ≥ d2. From Eq. (C.10), we have

ELICITBMp,q (EL1,EL2, ...,ELn)
= 𝜁

(
BMp,q (a1, a2, ..., an) ,BMp,q (b1, b2, ..., bn) ,

BMp,q (c1, c2, ..., cn) ,BMp,q (d1, d2, ..., dn)
)

≥ 𝜁
(
min

i
ai,min

i
bi,min

i
ci,min

i
di
)

Similarly, we can show that

ELICITBMp,q (EL1,EL2, ...,ELn)
≤ 𝜁

(
max

i
ai,max

i
bi,max

i
ci,max

i
di
)

Hence the result.
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