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ABSTRACT
The choice of green suppliers involves a large amount of inaccurate, incomplete, and inconsistent information, and the single-
valued triangular Neutrosophic number that is an extension of the single-valued Neutrosophic number can effectively handle
such problems. Considering the advantages of the single-valued triangular Neutrosophic number, this paper proposes a new
aggregate operator to solve the problem of multi-criteria decision making. The new aggregate operator takes into account the
priority relationship and the interrelationship between the criteria. To make the new aggregate operator more flexible, this paper
introduces the Dombi operations. This paper combines the Dombi operations with the prioritized average operator and the
Bonferronimean operator to propose the single-valued triangularNeutrosophicDombi prioritized normalized Bonferronimean
(SVTNDPNBM) operator. Finally, the SVTNDPNBM operator is applied to the problem of the green supplier selection, which
proves its feasibility and stability.

© 2019 The Authors. Published by Atlantis Press SARL.
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1. INTRODUCTION

In recent years, consumers, business operators, and governments
are paying more and more attention to green development and
environmental performance issues, with the rapid consumption
of resources and serious environmental pollution. In this context,
companies that want to have competitive advantage in the mar-
ket cannot ignore the environmental factors in supplier selection.
Choosing the appropriate green supplier can improve market com-
petitive advantage and environmental performance. But choosing
the right green supplier requires consideration of criteria such as
product quality, cost, service capability, green image, and innova-
tion capability. In essence, the process of choosing the best green
supplier is a multi-criteria decision-making (MCDM) problem.

After Zadeh [1] proposed the concept of fuzzy sets (FS), FS
were widely used. But the FS represent the uncertainty of deci-
sion information only by using the membership degree. Atanassov
[2] proposed intuitionistic fuzzy sets (IFS) by introducing non-
membership degree, which can effectively deal with the problems
that FS cannot handle. Gargov et al. [3] and Atanassov [4] extended
the IFS to interval numbers, and proposed interval IFS (IIFS). Torra
[5] defined hesitant fuzzy sets (HFS), which can deal with the
uncertainty caused by the decision maker’s hesitation well. Qian
et al. [6] and Zhu et al. [7] defined generalized HFS and double
HFS, respectively. However, sometimes the sum of membership
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degree and non-membership degree is greater than one. Yager [8]
proposed Pythagorean fuzzy sets (PFS) to solve this problem, allow-
ing the sum of membership degree and non-membership degree to
be greater than one, while satisfying the sum of the squares of the
membership degree and the non-membership degree is less than
or equal to one. Although FSs theory has been extensively studied
and expanded, FS and their extension sets cannot handle discontin-
uous and inconsistent information. The emergence of the Neutro-
sophic sets (NS) just makes up for this deficiency. Smarandache [9]
proposed the concept of the NS, which uses the truth-membership
function, the indeterminacy-membership function and the falsity-
membership function to depict the fuzzy information, and these are
independent of each other.

Although the NS expand the expression of uncertain information,
it is very inconvenient in practical applications. To simplify the
NS, Ye [10] proposed the concept of simplified Neutrosophic sets
(SNS), and pointed out SNS contain single-valued Neutrosophic
sets (SVNS) and interval Neutrosophic sets (INS). Ye [11] proposed
aggregation operators and cosine similarity measurement of SNS.
Peng, Wang et al. [12] improved the operations of SNS in the lit-
erature [11]. Biswas et al. [13] combined triangular fuzzy numbers
with SVNS, and proposed single-valued triangular Neutrosophic
sets (SVTNS). Wang et al. [14] considered the conflicting criteria,
extended the original VIKORmodel to SVTNS, and introduced the
specific steps to apply the method.
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The aggregation operators present the powerful tool for handling
MCDM problem. Dombi [15] proposed Dombi operations, includ-
ing T-norm and T-conorm, which show the advantage of good flex-
ibility with the operation of parameters. Recently, several authors
defined Dombi operations in IFS [16], SVNS [17], HFS [18]. Yager
[19] proposed prioritized average (PA) operator by considering the
priority relationship between the criteria. The PA operator has been
widely used in a variety of fuzzy numbers, such as HFS [20], uncer-
tain linguistic sets [21], interval-valued hesitant fuzzy [22], INS
[23]. In order to solve the relationship between the criteria, Bonfer-
roni [24] proposed the Bonferroni mean (BM) aggregation oper-
ator. Yager et al. [25] defined weighted Bonferroni mean (WBM)
operator based on the BM operator, but WBM has the disadvan-
tage of non-reducibility. In order to overcome this deficiency, Zhou
and He [26] defined the normalized weighted Bonferroni mean
(NWBM) operator based on the WBM operator. Tian et al. [27]
proposed the gray linguistic BM operator to address the situations
where the criterion values take the form of gray linguistic num-
bers and the criterion weights are known. Each operator has its
own unique advantages. Liu et al. [16] proposed some Dombi BM
operators in the IFS environment. Khan et al. [28] proposed Dombi
power BM operators in the INS environment. Nie et al. [29] pro-
posed partitioned NWBM operator based on Shapley fuzzy mea-
sures, in the PFS environment. Considering the advantages of the
Hamy mean operator, Li et al. [30] proposed Dombi Hamy mean
operators in the IFS environment, and Wu et al. [31] proposed
Dombi Hamy mean operators in the IIFS environment. Yager et al.
[32] applied the Dombi operators to Picture fuzzy, and Zhang et al.
[33] proposed Picture fuzzy Dombi Heronian mean operators. Wei
and Zhang [34] introduced Bonferroni power operators into SVNS
environment. Wang et al. [35] combined Frank operational laws to
proposed Frank prioritized BM operator.

Choosing the right green supplier can eliminate some environmen-
tal impact and improve environmental performance. So far, the
research of green supplier selection has achieved certain results.
Noci [36] pointed out for the first time that measuring the environ-
mental performance of green suppliers includes quantitative and
qualitative indicators, and proposed a method of selecting green
suppliers from the environmental perspective. Lee et al. [37] used
Delphi method to distinguish traditional suppliers from green sup-
pliers and proposed a fuzzy extended analytic hierarchy process
model to evaluate green suppliers. Gao et al. [38] used intuitionis-
tic fuzzy numbers for green supplier selection when criteria weights
are unknown. Due to the complexity of the environment, the infor-
mation available for evaluation selection is increasingly uncertain.
Liang et al. [39] proposed the single-valued trapezoidal Neutro-
sophic preference relations as a strategy for tackling green supplier
selection problems. Qin et al. [40] considered that decision mak-
ers are not entirely reasonable in making decisions, and extend the
TODIM technique to solveMCDMproblems, then proposed a new
method for select the optimal green supplier in the interval type-
2 FS environment. Yazdani et al. [41] comprehensively considered
the evaluation criteria of traditional suppliers and green suppliers,
and sorted green suppliers based on the quality function deploy-
ment model. Li et al. [42] demonstrated the advantages of proba-
bility HFS in decision making process, and combined probability
HFS and the extended qualitative flexible multiple method to solve
the problem of green supplier selection. Ji et al. [43] conducted a
study on green supplier selection in the context of the single-valued
Neutrosophic linguistic sets.

According to the existing literature, nobody proposed the Dombi
operations of SVTNS, and nobody combined the PA operator with
the BM operator for the SVTNS environment. Therefore, it is nec-
essary to propose SVTNDPNDM operator. The SVTNDPNBM
operator has some flexibility, and simultaneously considers the
priority relationship and interaction between the criteria by inte-
grating the Dombi operations, the PA operator and NWBM
operator. In this paper, the SVTNS are used to represent the eval-
uation value corresponding to different green suppliers, which can
represent more uncertain information. The selection of the PA
operator can take into account the priority relationship between the
criteria. The selection of the BM operator can take into account
the interrelationship between the criteria, and introduce the Dombi
operations for the flexibility of the operation.

This paper firstly defines the Dombi operations in the SVTNS envi-
ronment. Then, based on theDombi operations, we combine the PA
operator and BM operator, and propose the single-valued triangu-
lar Neutrosophic Dombi Bonferroni mean (SVTNDBM) operator
and the single-valued triangular Neutrosophic Dombi prioritized
normalized Bonferroni mean (SVTNDPNBM) operator. Finally,
based on the proposed new operator, a model is established to solve
MCDM problem.

The rest of the paper is structured as follows: In the second section,
the related concepts of the SVTNS, Dombi operations, PA oper-
ator and BM operator are introduced in detail. The third section
proposes the new operator of SVTNS. The forth section builds a
model for selecting suitable green suppliers. The fifth section gives
a numerical example to prove the feasibility and adaptability of the
proposed method. The last part is the conclusion.

2. PRELIMINARIES

This section introduces some concepts about the SVTNS, Dombi
operations, PA operator, and BM operator. These will be used in
later papers.

2.1. Single-Valued Triangular Neutrosophic
Sets

The SVNS is a good representation of uncertain, incomplete, and
inconsistent information in the real world, but decision makers
often use fuzzy numbers rather than precise numbers to represent
membership function. Biswas et al. [13] defined the SVTNS by
combining the triangular fuzzy number and the SVNS.

Definition 1. [13] Let X be a finite set of points (objects), let x
denote a generic element in X, and E [0,1] be the set of all triangu-
lar fuzzy numbers on [0,1]. The SVTNSA in X is characterized by a
truth-membership functionTA (x), an indeterminacy-membership
function IA (x) and a falsity-membership function FA (x). Then, the
SVTNS A can be depicted as:

A = {⟨x,TA (x) , IA (x) , FA (x)⟩ |x ∈ X}

where, TA (x) ∶ X → E [0, 1], IA (x) ∶ X → E [0, 1] and
FA(x) ∶ X → E[0, 1]. TA (x) , IA (x) , FA (x) can be expressed as fol-
lows: TA (x)=

(
T1A (x) ,T2A (x) ,T3A (x)

)
, IA(x)=

(
I1A(x), I2A(x), I3A(x)

)
and FA (x) =

(
F1A (x) , F2A (x) , F3A (x)

)
, for every x ∈ X, satisfy

0 ≤ T3A (x) + I3A (x) + F3A (x) ≤ 3.Pdf_Folio:1092



J. Fan et al. / International Journal of Computational Intelligence Systems 12(2) 1091–1101 1093

For convenience, we consider A = ⟨(a, b, c) ,
(
e, f, g

)
, (r, s, t)⟩

as SVTN number, where
(
T1A (x) ,T2A (x) ,T3A (x)

)
= (a, b, c),(

I1A (x) , I2A (x) , I3A (x)
)
=

(
e, f, g

)
and

(
F1A (x) , F2A (x) , F3A (x)

)
=

(r, s, t).
Definition 2. [13] Let

A1 = ⟨(a1, b1, c1) ,
(
e1, f1, g1

)
, (r1, s1, t1)⟩, A2 =

⟨(a2, b2, c2) ,
(
e2, f2, g2

)
, (r2, s2, t2)⟩ be two SVTN numbers, the

rules of operations can be defined as follows:

1. A1⊕A2 = ⟨ (a1 + a2 – a1a2, b1 + b2 – b1b2, c1 + c2 – c1c2) ,(
e1e2, f1f2, g1g2

)
, (r1r2, s1s2, t1t2)

⟩

2. A1 ⊗ A2 = ⟨
(a1a2, b1b2, c1c2) ,(
e1 + e2 – e1e2, f1 + f2 – f1f2, g1 + g2 – g1g2

)
,

(r1 + r2 – r1r2, s1 + s2 – s1s2, t1 + t2 – t1t2)
⟩

3. 𝜆A1 = ⟨
(
1 – (1 – a1)𝜆 , 1 – (1 – b1)

𝜆 , 1 – (1 – c1)𝜆
)
,(

e𝜆1 , f
𝜆
1 , g

𝜆
1
)
,
(
r𝜆1 , s

𝜆
1 , t

𝜆
1
) ⟩ ,

𝜆 > 0

4. A𝜆
1 = ⟨

(
a𝜆1 , b

𝜆
1 , c

𝜆
1
)
,(

1 – (1 – e1)𝜆 , 1 –
(
1 – f1

)𝜆 , 1 –
(
1 – g1

)𝜆) ,(
1 – (1 – r1)𝜆 , 1 – (1 – s1)𝜆 , 1 – (1 – t1)𝜆

) ⟩ ,

𝜆 > 0

The above operations satisfy the following properties:

1. A1 ⊕ A2 = A2 ⊕ A1;A1 ⊗ A2 = A2 ⊗ A1

2. 𝜆 (A1 ⊕ A2) = 𝜆A1 ⊕ 𝜆A2;
(A1 ⊗ A2)

𝜆 = A𝜆
1 ⊗ A𝜆

2 𝜆 > 0

3. 𝜆1A1 ⊕ 𝜆2A1 = (𝜆1 + 𝜆2)A1;
A𝜆1
1 ⊗ A𝜆2

1 = A𝜆1+𝜆2
1 𝜆1, 𝜆2 > 0

Definition 3. [13] Let A = ⟨(a, b, c) ,
(
e, f, g

)
, ((r, s, t))⟩ be a SVTN

number, the score function S and accuracy function H can be
expressed as follows:

S (A) = 1
12 [8 + (a + 2b + c) –

(
e + 2f + g

)
– (r + 2s + t)]

S (A) ∈ [0, 1] (1)

H (A) = 1
4 [(a + 2b + c) – (r + 2s + t)] ,H (A) ∈ [–1, 1] (2)

Definition 4. [13] Let A1 , A2 be two SVTN numbers, according
Definition 3 the order relations are defined as follows:

1. if S (A1) < S (A2) , thenA1 ≺ A2 ;
2. if S (A1) > S (A2) , thenA1 ≻ A2 ;
3. if S (A1) = S (A2) ,H (A1) < H (A2) , thenA1 ≺ A2 ;
4. if S (A1) = S (A2) ,H (A1) > H (A2) , thenA1 ≻ A2 ;
5. if S (A1) = S (A2) ,H (A1) = H (A2) , thenA1 ∼ A2 ;

2.2. Dombi Operations

Information aggregation in multi-criteria decision making is a
crucial step. However, the existing aggregation operators are flex-
ibility lack. To overcome this deficiency, Dombi [15] proposed
Dombi operations, including T-norm and T-conorm.

Definition 5. [15] Let s and t be any two real numbers. Then, the
Dombi T-norm and Dombi T-conorm among s and t are depicted
as follows:

OD (s, t) = 1

1 +
(( 1–s

s

)𝛾
+
( 1–t

t

)𝛾)1/𝛾 (3)

OC
D (s, t) = 1 – 1

1 +
((

s
1–s

)𝛾
+
(

t
1–t

)𝛾)1/𝛾 (4)

where, 𝛾 ≥ 1 and (s, t) ∈ [0,1] × [0,1].

2.3. PA Operator

When a decision maker makes a multi-criteria decision, all the cri-
teria are not equally important, and there is a priority relationship
between the criteria. Therefore, Yager [19] considering the priority
relationship between the criteria proposed a PA operator.

Definition 6. [19] Let C = {C1,C2,⋯ ,Cn} be a set of criteria, and
exists C1 ≻ C2 ≻ ⋯ ≻ Cn priority relationship between the crite-
ria.Where the value y under the criteriaCi isCi

(
y
)
(i = 1, 2,⋯ , n),

and satisfies Ci
(
y
)
∈ [0, 1]. Then the PA operator is depicted as

follows:

PA
(
C1

(
y
)
,C2

(
y
)
,⋯ ,Cn

(
y
))

=
n

∑
i=1

wiCi
(
y
)

(5)

where wi =
Hi

∑n
i=1 Hi

, Hi =∏i–1
k=1 Ck

(
y
)
(i ≥ 2), and H1 = 1.

2.4. BM Operator

In some special cases, the criteria are dependent criteria. In order
to solve the relationship between the criteria, Bonferroni [24] pro-
posed the BM aggregation operator.

Definition 7. [24] Let bi (i = 1, 2,⋯ , n) be a collection of non-
negative real numbers and p, q > 0. The BM operator is depicted as
follows:

BMp,q (b1, b2,⋯ , bn) =

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n

∑
i, j = 1,
i ≠ j

bpi b
q
j

⎞⎟⎟⎟⎟⎟⎠

1/p+q

(6)

However, in practical problems, multi-criteria decision usually
needs to consider the importance of the criteria, and assign different
weights to different criteria. Yager et al. [25] defined WBM opera-
tor based on the BM operator.Pdf_Folio:1093
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Definition 8. [25] Let bi (i = 1, 2,⋯ , n) be a collection of non-
negative real numbers and p, q > 0. w = (w1,w2,⋯wn)

T is the
weight vector of bi,∑n

i=1 wi = 1, and wi ∈ [0, 1]. The WBM oper-
ator is depicted as follows:

WBMp,q (b1, b2,⋯ , bn) =

⎛⎜⎜⎜⎜⎜⎝
1

n (n – 1)
n

∑
i, j = 1,
i ≠ j

(wibi)
p (wjbj

)q⎞⎟⎟⎟⎟⎟⎠

1/p+q

(7)

There is a defect in this WBM operator that is non-reducibility.
Zhou and He [26] further defined the NWBM operator based on
the WBM operator.

Definition 9. [26] Let bi (i = 1, 2,⋯ , n) be a collection of non-
negative real numbers and p, q > 0. w = (w1,w2,⋯wn)

T is the
weight vector of bi, ∑n

i=1 wi = 1, and wi ∈ [0, 1]. The NWBM
operator is depicted as follows:

NWBMp,q (b1, b2,⋯ , bn) =

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

wiwj

1 – wi
bpi b

q
j

⎞⎟⎟⎟⎟⎟⎠

1/p+q

(8)

1. A1 ⊕D A2 = ⟨

⎛⎜⎜⎜⎜⎝
1 – 1

1+
((

a1
1–a1

)𝛾

+
(

a2
1–a2

)𝛾) 1
𝛾
, 1 – 1

1+
((

b1
1–b1

)𝛾

+
(

b2
1–b2

)𝛾) 1
𝛾
, 1 – 1

1+
((

c1
1–c1

)𝛾

+
(

c2
1–c2

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1

1+
((

1–e1
e1

)𝛾

+
(
1–e2
e2

)𝛾) 1
𝛾
, 1

1+
((

1–f1
f1

)𝛾

+
(
1–f2
f2

)𝛾) 1
𝛾
, 1

1+
((

1–g1
g1

)𝛾

+
(
1–g2
g2

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1

1+
((

1–r1
r1

)𝛾

+
(
1–r2
r2

)𝛾) 1
𝛾
, 1

1+
((

1–s1
s1

)𝛾

+
(
1–s2
s2

)𝛾) 1
𝛾
, 1

1+
((

1–t1
t1

)𝛾

+
(
1–t2
t2

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
⟩

2. A1 ⊗D A2 = ⟨

⎛⎜⎜⎜⎜⎝
1

1+
((

1–a1
a1

)𝛾

+
(
1–a2
a2

)𝛾) 1
𝛾
, 1

1+
((

1–b1
b1

)𝛾

+
(
1–b2
b2

)𝛾) 1
𝛾
, 1

1+
((

1–c1
c1

)𝛾

+
(
1–c2
c2

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1 – 1

1+
((

e1
1–e1

)𝛾

+
(

e2
1–e2

)𝛾) 1
𝛾
, 1 – 1

1+
((

f1
1–f1

)𝛾

+
(

f2
1–f2

)𝛾) 1
𝛾
, 1 – 1

1+
((

g1
1–g1

)𝛾

+
(

g2
1–g2

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1 – 1

1+
((

r1
1–r1

)𝛾

+
(

r2
1–r2

)𝛾) 1
𝛾
, 1 – 1

1+
((

s1
1–s1

)𝛾

+
(

s2
1–s2

)𝛾) 1
𝛾
, 1 – 1

1+
((

t1
1–t1

)𝛾

+
(

t2
1–t2

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
⟩

3. DOMBI PRIORITIZED NORMALIZED BM
OPERATOR OF SVTNS

This section proposes SVTNDBM operator. Afterwards, we define
the SVTNDPNBM operator on the basis of the Dombi operations,
the PA operator and NWBM operator. The SVTNDPNBM opera-
tor has some flexibility, and simultaneously considers the priority
relationship and interaction between the criteria by integrating the
Dombi operations, the PA operator andNWBMoperator. Then, we
prove several properties of the SVTNDPNBM operator.

3.1. Dombi Operations of SVTNS

This part introducesDombi operations of SVTNSbased on theDef-
inition 2 and the Definition 5.

Definition 10. Let

A1 = ⟨(a1, b1, c1) ,
(
e1, f1, g1

)
, (r1, s1, t1)⟩, A2 =

⟨(a2, b2, c2), (e2, f2, g2), (r2, s2, t2)⟩ be two SVTN numbers, 𝛾 ≥ 1
and 𝜆 > 0. Then, the Dombi T-norm and Dombi T-conorm of
SVTNS can be depicted as follows:

Pdf_Folio:1094



J. Fan et al. / International Journal of Computational Intelligence Systems 12(2) 1091–1101 1095

3. 𝜆 ⋅D A1 = ⟨

⎛⎜⎜⎜⎜⎝
1 – 1

1+
(
𝜆
(

a1
1–a1

)𝛾) 1
𝛾
, 1 – 1

1+
(
𝜆
(

b1
1–b1

)𝛾) 1
𝛾
, 1 – 1

1+
(
𝜆
(

c1
1–c1

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1

1+
(
𝜆
(
1–e1
e1

)𝛾) 1
𝛾
, 1

1+
(
𝜆
(
1–f1
f1

)𝛾) 1
𝛾
, 1

1+
(
𝜆
(
1–g1
g1

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1

1+
(
𝜆
(
1–r1
r1

)𝛾) 1
𝛾
, 1

1+
(
𝜆
(
1–s1
s1

)𝛾) 1
𝛾
, 1

1+
(
𝜆
(
1–t1
t1

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
⟩

4. (A1)
∧D𝜆 = ⟨

⎛⎜⎜⎜⎜⎝
1

1+
(
𝜆
(
1–a1
a1

)𝛾) 1
𝛾
, 1

1+
(
𝜆
(
1–b1
b1

)𝛾) 1
𝛾
, 1

1+
(
𝜆
(
1–c1
c1

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1 – 1

1+
(
𝜆
(

e1
1–e1

)𝛾) 1
𝛾
, 1 – 1

1+
(
𝜆
(

f1
1–f1

)𝛾) 1
𝛾
, 1 – 1

1+
(
𝜆
(

g1
1–g1

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1 – 1

1+
(
𝜆
(

r1
1–r1

)𝛾) 1
𝛾
, 1 – 1

1+
(
𝜆
(

s1
1–s1

)𝛾) 1
𝛾
, 1 – 1

1+
(
𝜆
(

t1
1–t1

)𝛾) 1
𝛾

⎞⎟⎟⎟⎟⎠
⟩

3.2. The SVTNDPNBM Operator

Now, based on these new Dombi T-norm and Dombi T-conorm of
SVTNS, we define the SVTNDBMoperator and the SVTNDPNBM
operator.

Definition 11. Let

xi = ⟨(ai, bi, ci) ,
(
ei, fi, gi

)
, (ri, si, ti)⟩ (i = 1, 2,⋯ , n) be a set of

SVTN numbers, and p, q > 0. Then, the SVTNDBM operator can
be depicted as follows:

SVTNDBMp,q (x1, x2,⋯ , xn) =

⎛⎜⎜⎜⎜⎝
1

n (n – 1) ⋅D
n
⊕D
i, j = 1,
i ≠ j

(
(xi)∧Dp ⊗D

(
xj
)∧Dq)⎞⎟⎟⎟⎟⎠

∧D
1

p+q

(9)

This part proposes the SVTNDPNBM operator based on the PA
operator and NWBM operator as Definitions 6 and 9. The SVT-
NDPNBM operator is defined as follows:

Definition 12. Let C = {C1,C2,⋯ ,Cn} be a set of crite-
ria, and exists C1 ≻ C2 ≻ ⋯ ≻ Cn priority rela-
tionship between the criteria. The performance value of object
x under criterion Ci is denoted by SVTN numbers xi =
⟨(ai, bi, ci) ,

(
ei, fi, gi

)
, (ri, si, ti)⟩(i = 1, 2,⋯ , n). Then the SVT-

NDPNBM operator is depicted as follows:

SVTNDPNBMp,q (x1, x2,⋯ , xn) =

⎛⎜⎜⎜⎜⎝
n
⊕D
i, j = 1,
i ≠ j

( wiwj

1 – wi
⋅D

(
(xi)∧Dp ⊗D

(
xj
)∧Dq))⎞⎟⎟⎟⎟⎠

∧D
1

p+q

(10)

where wi =
Hi

∑n
i=1 Hi

, Hi = ∐i–1
k=1 S (xk) (i ≥ 2), H1 = 1, and S (xk)

is the score function of SVTN number xk obtained by Definition 4.

Theorem 1. The SVTNDPNBM operator in Definition 12 is still an
SVTN number, anPdf_Folio:1095
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SVTNDPNBMp,q (x1, x2,⋯ , xn)

= ⟨

⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pA𝛾i +qA
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

,

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pB𝛾i +qB
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pC𝛾i +qC
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎝
1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pE𝛾j +qE
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pF𝛾i +qF
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pG𝛾i +qG
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎝
1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pE𝛾i +qE
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pF𝛾i +qF
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
1/

n

∑
i, j = 1,
i ≠ j

(p+q)Wij

pG𝛾i +qG
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
⟩

Theorem 1 can be proved by mathematical operations as follows:

Proof. Let
1 – ai
ai

= Ai,
1 – aj
aj

= Aj,
1 – bi
bi

= Bi,
1 – bj
bj

= Bj,

1 – ci
ci

= Ci,
1 – cj
cj

= Cj,
ei

1 – ei
= Ei,

ej
1 – ej

= Ej,
fi

1 – fi
= Fi,

fj
1 – fj

= Fj,
gi

1 – gi
= Gi,

gj
1 – gj

= Gj,
ri

1 – ri
= Ri,

rj
1 – rj

= Rj,

si
1 – si

= Si,
sj

1 – sj
= Sj,

ti
1 – ti

= Ti,
tj

1 – tj
= Tj,

wiwj

1 – wi
= Wij.

According to Definition 10, we have,

(xi)∧Dp ⊗D
(
xj
)∧Dq =

⟨

⎛⎜⎜⎜⎜⎝
1

1 +
(
pA𝛾

i + qA𝛾
j

) 1
𝛾
, 1

1 +
(
pB𝛾i + qB𝛾j

) 1
𝛾
, 1

1 +
(
pC𝛾i + qC𝛾j

) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1 – 1

1 +
(
pE𝛾i + qE𝛾j

) 1
𝛾
, 1 – 1

1 +
(
pF𝛾i + qF𝛾j

) 1
𝛾
,

1 – 1

1 +
(
pG𝛾

i + qG𝛾
j

) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1 – 1

1 +
(
pR𝛾i + qR𝛾j

) 1
𝛾
,

1 – 1

1 +
(
pS𝛾i + qS𝛾j

) 1
𝛾
, 1 – 1

1 +
(
pT𝛾i + qT𝛾j

) 1
𝛾

⎞⎟⎟⎟⎟⎠
⟩

Then,

wiwj

1 – wi
⋅D (xi)∧Dp ⊗D

(
xj
)∧Dp = ⟨

⎛⎜⎜⎜⎜⎝
1 – 1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pA𝛾
i + qA𝛾

j

) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

1 – 1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pB𝛾i + qB𝛾j
) 1
𝛾

⎞⎟⎟⎟⎟⎠
, 1 – 1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pC𝛾i + qC𝛾j
) 1
𝛾

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pE𝛾i + qE𝛾j
) 1
𝛾

⎞⎟⎟⎟⎟⎠
, 1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pF𝛾i + qF𝛾j
) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pG𝛾
i + pG𝛾

j

) 1
𝛾

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎝
1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pR𝛾i + qR𝛾j
) 1
𝛾

⎞⎟⎟⎟⎟⎠
,

1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pS𝛾i + qS𝛾j
) 1
𝛾

⎞⎟⎟⎟⎟⎠
, 1/

⎛⎜⎜⎜⎜⎝
1 +

W
1
𝛾
i j(

pT𝛾i + qT𝛾j
) 1
𝛾

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⟩
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And,

n
⊕D

i, j = 1,
i ≠ j

( wiwj

1 – wi
⋅D

(
(xi)∧Dp ⊗D

(
xj
)∧Dq))

= ⟨

⎛⎜⎜⎜⎜⎜⎜⎝
1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pA𝛾i +qA
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pB𝛾i +qB
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1 – 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pC𝛾i +qC
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎝
1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pE𝛾i +pE
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pF𝛾i +qF
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pG𝛾i +qG
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎝
1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pR𝛾i +qR
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pS𝛾i +qS
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

, 1/

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

Wij

pT𝛾i +qT
𝛾
j

⎞⎟⎟⎟⎟⎟⎠

1
𝛾 ⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠
⟩

Furthermore, according to Definition 10 we can prove that
Theorem 1 is established.

Theorem 2. (Reducibility)

Let C = {C1,C2,⋯ ,Cn} be a set of criteria, and Ci (i = 1, 2,⋯ , n)
have the priority relationship. When wi =

1
n (i = 1, 2,⋯ , n) is sat-

isfied, the SVTNDPNBM operator is equivalent to the SVTNDBM
operator.

Proof. When wi =
1
n (i = 1, 2,⋯ , n), then

wiwj

1 – wi
= 1

n (n – 1) ,
according to Definition 10, we can obtain that

SVTNDPNBMp,q (x1, x2,⋯ , xn) = SVTNDBMp,q (x1, x2,⋯ , xn)

Then, we can prove that Theorem 2 is established.

Theorem 3. (Idempotency)

Let xi = ⟨(ai, bi, ci) ,
(
ei, fi, gi

)
, (ri, si, ti)⟩(i = 1, 2,⋯ , n) be a set of

SVTN numbers, if all SVTN number are equal, i.e., xi = x. Then,

SVTNDPNBMp,q (x1, x2,⋯ , xn) = x

Proof. When xi = x, according to Definition 10, we can obtain that

SVTNDPNBMp,q (x1, x2,⋯ , xn)

=

⎛⎜⎜⎜⎜⎝
n
⊕D
i, j = 1,
i ≠ j

( wiwj

1 – wi
⋅D

(
(xi)∧Dp ⊗D

(
xj
)∧Dq))⎞⎟⎟⎟⎟⎠

∧D
1

p+q

=

⎛⎜⎜⎜⎜⎝
n
⊕D
i, j = 1,
i ≠ j

( wiwj

1 – wi
⋅D (xi)∧Dp+q

)⎞⎟⎟⎟⎟⎠

∧D
1

p+q

=

⎛⎜⎜⎜⎜⎜⎝
n

∑
i, j = 1,
i ≠ j

wiwj

1 – wi
⋅D (xi)∧Dp+q

⎞⎟⎟⎟⎟⎟⎠

∧D
1

p+q

=
(
(xi)∧Dp+q

)∧D 1
p+q

= x

Then, we can prove that Theorem 3 is established.
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4. METHOD FOR SELECTING GREEN
SUPPLIER

Suppose that there are m green providers X = {x1, x2,⋯ , xm} and
n criteria C = {c1, c2,⋯ , cn}. There is a correlation between the
criteria, and different criteria have a strict priority relationship. Let
U =

(
aij
)
m×n

be a single-valued triangular Neutrosophic decision
matrix, where aij = ⟨Tij, Iij, Fij⟩ is the evaluation value of each green
supplier under different criteria.

The following section is a sorting process for green suppliers based
on the SVTNDPNBM operator.

• Step 1: Calculate the score value sij of each aij according to
Definition 3.

• Step 2: Determine the relevant weight according to each sij.

• Step 3: Assume 𝛾 = 1, p = q = 1 and aggregate the evaluation
values of each green suppliers based on Definition 12 and the
results of Step 2.

• Step 4: Calculate the value S (xi) , H (xi) (i = 1, 2,⋯ ,m)of the
green suppliers after aggregation according to Definition 3.

• Step 5: Sort by the results of step 4.

• Step 6: Replace 𝛾, p, q with different values and compare
analysis.

• Step 7: Comparative analysis.

5. NUMERICAL EXAMPLE

Consider the green supplier selection problem in which a criterion
has a priority relationship and amutual relationship and cannot give
corresponding weights to the example of the section. There are five
green suppliers to choose X = {x1, x2,⋯ , x5} and five evaluation
criteria C = {c1, c2,⋯ , c5}. The five criteria are product quality,
cost, service capability, green image, and innovation capability. The
priority relationship between the criteria is c1 ≻ c2 ≻ c3 ≻ c4 ≻ c5.
Table 1 is a single-valued triangular Neutrosophic decision matrix.
The elements in the Table 1 represent the corresponding evaluation
values under the five criteria.

Step 1: Calculate the score value sij of each aij according to Defini-
tion 3. The calculation results are shown in Table 2.

Step 2: Determine the relevant weight according to each sij. The cal-
culation results are shown in Table 3.

Step 3: Assume 𝛾 = 1, p = q = 1 and aggregate the evaluation
values of each green suppliers based onDefinition 12 and the results
of Step 2. According to this, the comprehensive evaluation value of
the green suppliers can be obtained as follows:

x1 = ⟨ (0.5319, 0.6211, 0.7872) , (0.3547, 0.4150, 0.5237) ,
(0.1884, 0.3404, 0.4666) ⟩

x2 = ⟨ (0.5720, 0.6539, 0.7654) ,
(
0.3966, 0.4953, 0.6066

)
,

(0.2050, 0.3372, 0.4159) ⟩

x3 = ⟨ (0.6490, 0.7340, 0.8307) , (0.4666, 0.5469, 0.6115) ,
(0.3559, 0.4516, 0.5349) ⟩

x4 = ⟨ (0.7449, 0.8064, 0.9390) , (0.5704, 0.6347, 0.7543) ,
(0.4050, 0.5156, 0.6033) ⟩

x5 = ⟨ (0.5351, 0.6188, 0.7876) , (0.4351, 0.4919, 0.5705) ,
(0.2919, 0.3808, 0.4983) ⟩

Step 4: Calculate the value S (xi) , H (xi) (i = 1, 2,⋯ ,m) of the
green suppliers after aggregation according toDefinition 3. And the
calculation results are shown in Table 4.

Step 5: Sort by the results of step 4.

Since S (x1) > S (x2) > S (x5) > S (x3) > S (x4), according to Defi-
nition 4, we sort the green suppliers as x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4.

Step 6: Replace 𝛾, p, q with different values and compare analysis.

In order to consider the influence of parameters on the order-
ing, this step analyzes the influence of the change of 𝛾 on the
ordering when p, q = 1, and the effect of the change of p, q on the
ordering when 𝛾 = 1. The effect of the change of 𝛾 is shown in
Table 5, and the results of the change of p, q are shown in Table 6.

Step 7: Comparative analysis

Compare the method proposed in this paper with the methods in
other literatures, the results are shown in Table 7.

Table 1 Single-valued triangular Neutrosophic decision matrix.

c1 c2 c3 c4 c5 

x1 <(0.42,0.53,0.71),
(0.38,0.45,0.53),
(0.21,0.34,0.46)>

<(0.80,0.86,0.92),
(0.26,0.28,0.37),
(0.05,0.18,0.24)>

<(0.42,0.52,0.81),
(0.41,0.45,0.58),
(0.34,0.42,0.61)>

<(0.51,0.55,0.58),
(0.25,0.37,0.57),
(0.15,0.47,0.62)>

<(0.72,0.74,0.85),
(0.62,0.68,0.72),
(0.42,0.48,0.52)>

x2 <(0.50,0.55,0.64),
(0.25,0.37,0.42),
(0.20,0.29,0.31)>

<(0.71,0.84,0.86),
(0.51,0.58,0.64),
(0.12,0.35,0.42)>

<(0.40,0.51,0.67),
(0.40,0.51,0.67),
(0.34,0.45,0.61)>

<(0.80,0.82,0.86),
(0.42,0.51,0.67),
(0.21,0.25,0.38)>

<(0.57,0.61,0.97),
(0.53,0.61,0.84),
(0.28,0.36,0.42)>

x3 <(0.75,0.84,0.91),
(0.54,0.62,0.67),
(0.47,0.57,0.61)>

<(0.64,0.69,0.85),
(0.34,0.45,0.52),
(0.21,0.29,0.38)>

<(0.54,0.68,0.72),
(0.45,0.48,0.51),
(0.35,0.39,0.42)>

<(0.50,0.58,0.61),
(0.42,0.51,0.67),
(0.31,0.38,0.56)>

<(0.71,0.75,0.82),
(0.61,0.68,0.72),
(0.31,0.58,0.86)>

x4 <(0.85,0.89,0.94),
(0.65,0.67,0.75),
(0.61,0.69,0.76)>

<(0.57,0.61,0.97),
(0.53,0.61,0.84),
(0.28,0.36,0.42)>

<(0.87,0.89,0.94),
(0.54,0.68,0.71),
(0.23,0.35,0.51)>

<(0.64,0.84,0.87),
(0.51,0.58,0.64),
(0.32,0.38,0.42)>

<(0.47,0.51,0.67),
(0.32,0.45,0.58),
(0.12,0.38,0.45)>

x5 <(0.42,0.52,0.81),
(0.41,0.45,0.58),
(0.34,0.42,0.61)>

<(0.51,0.58,0.64),
(0.34,0.39,0.41),
(0.24,0.29,0.34)>

<(0.72,0.74,0.85),
(0.62,0.68,0.72),
(0.42,0.48,0.52)>

<(0.71,0.84,0.86),
(0.51,0.58,0.64),
(0.12,0.35,0.42)>

<(0.64,0.69,0.85),
(0.34,0.45,0.52),
(0.21,0.29,0.38)>
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Table 2 Score value.

c1 c2 c3 c4 c5
x1 0.5858 0.800 0.5492 0.5767 0.5375
x2 0.6450 0.6417 0.5125 0.6750 0.5625
x3 0.5558 0.6617 0.5958 0.5442 0.5008
x4 0.5067 0.5625 0.6283 0.6150 0.5858
x5 0.5492 0.6350 0.5375 0.6417 0.6617

Table 3 Weight matrix.

c1 c2 c3 c4 c5
x1 0.4065 0.2381 0.1905 0.1046 0.0603
x2 0.4142 0.2672 0.1714 0.0879 0.0593
x3 0.4421 0.2457 0.1626 0.0969 0.0527
x4 0.4806 0.2435 0.1369 0.0861 0.0529
x5 0.4534 0.2490 0.1581 0.0850 0.0545

Table 4 Score value and accuracy value.

x1 x2 x3 x4 x5
S
(
xi
)

0.6264 0.6130 0.5818 0.5553 0.5849
H
(
xi
)

0.3064 0.3375 0.2885 0.3143 0.2521

Table 5 The ranking orders of different 𝛾.

𝛾 Score Value Ranking Order

1 S
(
x1
)
= 0.6264, S

(
x2
)
= 0.6130, S

(
x3
)
= 0.5818, S

(
x4

)
= 0.5553, S

(
x5
)
= 0.5849 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

2 S
(
x1
)
= 0.6194, S

(
x2
)
= 0.6097, S

(
x3
)
= 0.5776, S

(
x4

)
= 0.5628, S

(
x5
)
= 0.5835 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

5 S
(
x1
)
= 0.6302, S

(
x2
)
= 0.6275, S

(
x3
)
= 0.5849, S

(
x4

)
= 0.5956, S

(
x5
)
= 0.6001 x1 ≻ x2 ≻ x5 ≻ x4 ≻ x3

10 S
(
x1
)
= 0.6518, S

(
x2
)
= 0.6436, S

(
x3
)
= 0.6043, S

(
x4

)
= 0.6165, S

(
x5
)
= 0.6272 x1 ≻ x2 ≻ x5 ≻ x4 ≻ x3

50 S
(
x1
)
= 0.6789, S

(
x2
)
= 0.6610, S

(
x3
)
= 0.6314, S

(
x4

)
= 0.6469, S

(
x5
)
= 0.6654 x1 ≻ x2 ≻ x5 ≻ x4 ≻ x3

Table 6 The ranking orders of different p, q.

p, q Score Value Ranking Order

0.001,1 S
(
x1
)
= 0.6825, S

(
x2
)
= 0.6518, S

(
x3
)
= 0.6139, S

(
x4

)
= 0.6055, S

(
x5
)
= 0.6198 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

0.01,1 S
(
x1
)
= 0.6800, S

(
x2
)
= 0.6499, S

(
x3
)
= 0.6126, S

(
x4

)
= 0.6032, S

(
x5
)
= 0.6185 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

0.1,1 S
(
x1
)
= 0.6614, S

(
x2
)
= 0.6363, S

(
x3
)
= 0.6025, S

(
x4

)
= 0.5868, S

(
x5
)
= 0.6080 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

1,1 S
(
x1
)
= 0.6264, S

(
x2
)
= 0.6130, S

(
x3
)
= 0.5818, S

(
x4

)
= 0.5553, S

(
x5
)
= 0.5849 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

1,2 S
(
x1
)
= 0.6322, S

(
x2
)
= 0.6159, S

(
x3
)
= 0.5854, S

(
x4

)
= 0.5613, S

(
x5
)
= 0.5896 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

1,5 S
(
x1
)
= 0.6489, S

(
x2
)
= 0.6274, S

(
x3
)
= 0.5954, S

(
x4

)
= 0.5759, S

(
x5
)
= 0.6004 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

1,10 S
(
x1
)
= 0.6614, S

(
x2
)
= 0.6363, S

(
x3
)
= 0.6025, S

(
x4

)
= 0.5868, S

(
x5
)
= 0.6080 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

0.1,0.1 S
(
x1
)
= 0.6264, S

(
x2
)
= 0.6130, S

(
x3
)
= 0.5818, S

(
x4

)
= 0.5553, S

(
x5
)
= 0.5849 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

4,4 S
(
x1
)
= 0.6264, S

(
x2
)
= 0.6130, S

(
x3
)
= 0.5818, S

(
x4

)
= 0.5553, S

(
x5
)
= 0.5849 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

10,10 S
(
x1
)
= 0.6264, S

(
x2
)
= 0.6130, S

(
x3
)
= 0.5818, S

(
x4

)
= 0.5553, S

(
x5
)
= 0.5849 x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4

Table 7 The ranking orders of approaches.

Order

SVTNDPNBM x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4
[13] TFNNWA x1 ≻ x2 ≻ x3 ≻ x5 ≻ x4
[13] TFNNWG x1 ≻ x2 ≻ x5 ≻ x3 ≻ x4
[14] VIKOR x1 ≻ x2 ≻ x3 ≻ x5 ≻ x4

As shown in Tables 5 and 6, the best green supplier is always x1, no
matter how the parameters change. As shown in Table 7, the best
green supplier is always x1, no matter which method is used. These
results demonstrate that the applicability and stability of the SVT-
NDPNBM operator proposed in this paper.

6. CONCLUSION

In this paper, we use SVTNS to indicate the evaluation value, and
use the triangular fuzzy number to represent the truth-membership
function, the indeterminacy-membership function and the
falsity-membership function, which can retain more uncertain
information of the object to be evaluated. The main contribution
of this paper is to consider the advantages and flexibility of Dombi
operations, PA operator, and BM operator, and combine them to
propose the SVTNDPNBM operator. The new aggregate operator
takes into account the priority relationship and the interrelation-
ship between the criteria. To make the new aggregate operator
more flexible, this paper introduces the Dombi operations. ThePdf_Folio:1099
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feasibility of the SVTNDPNBM operator is verified by the example
chosen by the green supplier, and the stability of the SVTNDPNBM
operator is verified by the change of the parameters.

In the future, due to the variety of operators, we can combine dif-
ferent operators and propose new operators. At the same time, we
can further explore the different properties and applications of the
SVTNS.
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