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1. INTRODUCTION

Understanding how our brain works and obtaining the capability
to analyze our thinking processes are important fields of research
which have recently advanced considerably. In the beginning, this
field of research was anecdotal or considered as pure fiction, but the
development made since the first human electroencephalography
(EEG) in 1924 made by Hans Berger [1] have created possibility of
an infinite number of applications for neurosciences [2]. The pur-
pose of a brain-computer interface (BCI) is to record brain signals
and translate them into commands to operate a device. At the same
time, it provides feedback to the user about how the intentions are
transformed into actions [3]. This definition explains how a BCI
system works. Based on the previous definition, a BCI based device
transforms mental activity into a physical effect while the user does
not have to make any physical effort.

The great number of applications make this research extremely
interesting [4].

A typical BCI system based on motor imagery (MI) can be seen as
a pattern recognition system, see Fig. 1.

The system has five consecutive stages: i) EEG acquisition; ii)
Preprocessing; iii) Feature extraction (FE); iv) Classification, and
finally, v) Feedback.

Everything begins with an EEG signal generation of the user, in this
case, ML

After the signal acquisition, in the next step, it is necessary to apply
some preprocessing to the signal. Preprocessing consists of cleaning
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Figure1 General scheme of a brain-computer
interface (BCI) system.

and suppressing noising input data called artifacts to enhance the
relevant information contained in the raw signals [5,6].

Once the signal is clean, the data reaches the feature extraction (FE)
stage. The interesting data of the EEG signals are reflected in the fea-
tures extracted by different techniques. Then, the Features go to the
Classification stage to be classified. The purpose of the classifica-
tion is to determine the intentions based on the extracted features.
Finally, if the feedback is enabled in the system the user can see the
classification results and it helps to modulate their Brain signals in
a right way in the next iteration.

In a binary MI-BCI experiment, an accuracy of between 80% and
90% is expected after 6-9 training sessions of 20 minutes each [7].
Nevertheless, and according to state of the art, certain subjects may
face difficulties in using MI based BCI systems and, in these cases,
the classification performances are quite poor even after using
multiple training sessions [8]. This is called BCI illiteracy [9].
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Therefore, a previous selection of subjects with good classification
performances in the experiments is expected in order to obtain high
classification results. Starting with untrained users presents diffi-
culties because of the high risk that their learning may be limited by
frustration [10]. A variety of methods for optimizing training were
described in the literature [10]. User-centered training approaches
may be employed in control tasks, and signal processing algorithms
which are highly customized to individual users [11]. It is important
to note that motivation is one of the variables to take into account
to get good results [10].

In MI-BCI experiments it is usual to imagine peculiar movements
of the hands, the feet or tongue [12], to be discriminated versus
other parts of the body [13]. Also, it is very common to use dataset
available on the Internet such as BCI competitions or Physionet.
There are several mechanisms to discriminate left/right hand in BCI
experiments using datasets from BCI competitions. For example,
recently Bashar et al. [14], Chatterjee et al. [15,16], or Seoane et al.
[17] published works using data from BCI competition II, and there
are many works with data from other BCI competitions [17-20].
There are also papers with the same MI task, published with data
collected by the researchers [8,21]. Other examples of binary MI
tasks available in the literature are discrimination left/right hand
and tongue [22,23]; left/right hand and word generation [24]; left,
right hand, foot and tongue [25]; left/right hand, foot and tongue
[26]; left, right hand, both hands and both feet [27]; extension/flex-
ion of wrist, open/close fingers [28].

In contrast with the previous part of the introduction, this work
wants to explore the control of a MI-BCI system by aeroplane pilots
performing new naturalistic and intuitive MI tasks. Conceivably,
naturalistic MI would be more intuitive for users and thus require
less training time [12]. Another objective of this work is to test if a
specific professional group takes advantage of their previous motor
experience in a MI-BCI experiment, and also, the authors want to
explore the evolution of results of these users in a new MI task.

Two experiments were developed to answer these questions. The
first one contains two groups of users: A control group (CG) with
7 users without any experience as aircraft pilots and a group with
7 pilots (PG) of the Spanish Airforce Academy. All of them have
to imagine the left and right movement of a plane doing the same
movements that that they would do in an aeroplane. It entails that
they have to imagine a complex movement that combines the right
hand and the feet. Although all the participants in this experiment
are motivated (all are volunteers), it is expected that PG would get
better results than the CG because they have done it many times
before in a real environment [12]. Since, in this work, the authors
are planning new MI tasks, it is interesting to check the influence of
the previous flight experience in the obtained results, therefore, in
this experiment CG act as a reference.

In order to explore more MI commands for BCI systems, a second
experiment was developed. Eight pilots were instructed to discrim-
inate the right movement of the aircraft, that combines the right
hand and the feet movements, and to press the radio button ask-
ing for permission to land. That requires the movement of the left
hand and the tongue. It is important to note that none of the users of
both experiments have used a BCI system before. Therefore, there
is no previous selection of the users. Thus, they are all novices, and
it is expected to get low classification accuracy results for all the
participants [8], especially in the first and second session.

The system worked with three FE methods to tune the system to
each user: Power Spectrum Density (PSD); Adaptive Autoregressive
Coefficients (AARs), and a feature reduction method, Principal
Component Analysis (PCA). In the classification stage, four
techniques: Linear Discriminant Analysis (LDA); Support Vector
Machine (SVM); K-Nearest Neighbor (K-NN), and Decision Tree
(DT), were implemented. Finally, all combinations between then
have been tested to get the BCI system adapted to each user.

2. RELATED WORK

Literature shows papers related to the experiments developed in
this work. There are some works to control Unnamed Aerial Vehi-
cle (UAV’s) with BCI systems and aircrafts. In 2010, Akce et al. [29]
presents preliminary results of an interface that allows a human
pilot to remotely teleoperate an unmanned aircraft flying at a fixed
altitude using 8 electrodes to distinguish between left and right
hand MI. They claimed the feasibility of this approach. At the same
time, researchers of University of Minnesota were very active in this
area [30]. In 2010, they developed an experiment to control a vir-
tual helicopter in 3-dimensional (3D) space [31]. They used non-
invasive 64 electrode cap and four subjects to do the experiment. All
of them had previous experience in BCI systems. They were trained
in BCI and completed 33, 31, 24, and 20 training sessions with two
control commands (left- and right-hand movements). Researchers
reported that they were able to control the quadcopter in 3D vir-
tual environment. In 2013 LaFleur et al. [32] presents results with
5 users trained as in the previous experiment [31]. Individual sub-
jects were able to accurately acquire up to 90.5% of all valid targets
with a Quadcopter presented while traveling at an average straight-
line speed of 0.69 m/s. The MI implemented was the movement
of the hands. There are also articles that presents results to control
aircrafts. In 2014 Fricke ef al. [33] present the work entitled “First
Pilot-in-the-Loop simulator experiments on Brain Control of hor-
izontal aircraft motion” 7 subjects complete the experiment in a
realistic cockpit environment and, 6 of them were experienced air-
craft pilots. The MI performed was two different classes, hand or
feet MI. The results show that brain control of one degree of free-
dom of the aircraft motion is possible, in particular 2 users achieved
high reliability.

Recently, in 2017 Kryger et al. [34] published an experiment to
control a flight simulator by one subject diagnosed with a variant
of spinocerebellar degeneration resulting in complete quadriple-
gia. She was implanted with two 96-microelectrode arrays in her
left motor cortex. The experiment took 15 weeks. The participant
was able to achieve controlled changes in both pitch and roll fairly
well. Her strategy combined to imagine visualizing desired aircraft
movements and the movement of the hands.

3. MATERIALS AND METHODS
3.1. EEG Signal Generation and Acquisition

For this research, the authors generated a dataset at the University
Cenetr of Defence at the Spanish Air Force Academy, Spain. The
dataset is composed of EEG signals from 22 male volunteers all
of them with normal vision (according with the values established
for the Spanish Air Forces); all the characteristics are presented in
Table 1. It is remarkable that none of these subjects had used a BCI
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Table 1 E list of subjects of the first and second
experiments, and their characteristics, right/left-handed, age,
group, and number of flight hours.

First Experiment

Name  Left/Right Age Group Flight Hours
S1 Right 26 1 -
2 Right 21 1 -
S3 Right 21 1 -
S4 Right 25 1 -
S5 Right 31 1 -
S6 Right 31 1 -
S7 Left 25 1 -
S8 Right 21 1 50h
S9 Right 23 2 30h
S10 Right 21 2 51h
Si1 Right 21 2 50h
S12 Right 22 2 11h
S13 Left 21 2 94h
S14 Right 20 2 11h
Second Experiment

S15 Right 21 3 45h
S16 Right 23 3 48h
S17 Right 21 3 45h
S18 Right 21 3 50h
S19 Right 22 3 50h
S20 Left 21 3 50h
S21 Right 20 3 150h
S22 Right 26 3 150h

system before the current experiment. Thus, there has not been a
previous selection of the users.

As explained before, the subjects were divided into three groups:
7 Subjects for the first and second group and 8 subjects for the third.
Airforce training pilots composed the second and third groups.
These subjects had already performed the movements with a real
center stick, pedals, and radio equipment in an aircraft. Conse-
quently, they had to imagine themselves making these movements
as they do in the plane. However, CG was instructed how to make
the movements before the first session. They had time to practise
making the real movements in the Laboratory guided by a super-
visor who resolved any uncertainties. After that, they imagined the
movement as in the BCI experiment and finally they started the
session once they indicated that they were ready. It is important to
note that all the participants of the CG have been seated in the pilot
cabin of a real airplane touching the controls before the experiment.
Table 1 shows all the users, if they are right or left-handed and, the
group and the number of flight hours. The table shows that all are
young (21-29 years old) and only three of them are left-handed.
The flight experience is from 11 hours to 150 hours. Thus, this is
not a new movement for them. However, the first group (CG) have
never piloted a plane. Therefore, these subjects had to imagine an
unnatural movement, because they had never performed it before.

The EEG signals were captured with a StarStim 8 (Neuroelectrics),
and 8 monopolar channels located at F3, F4, T7, C3, Cz, C4, T8,
and Pz (see Fig. 2) reference and Ground (GND) located at the right
mastoid. StarStim is a wireless hybrid EEG/TCS 8-channel neu-
rostimulator system. In this case, dry EEG electrodes were used.
The amplifier was configured to acquired the data at 500 Hz with

16 bits. A bandpass filter was also applied to delete power line noise
at 50 Hz.

The users were comfortably seated in front of a screen to do the
experiments. Figure 3 shows the timing in seconds of the exper-
iments. Each trial starts with a black screen at second 0; then, a
cross appears in second 2. At second 4 the system presents an arrow
pointing to the left or the right for 1.25 seconds, and the subject
must imagine the movement associated with each arrow for a period
of 4 seconds. Throughout the first 40 trials the system does not pro-
vide feedback to the users, then, after adjusting the CSP parameters
and train the LDA classifier, the system shows the feedback as a blue
line. At second 8 the screen turns black again. Finally, it is impor-
tant to note that there is a random time between trials from 0.5 to
2.5 s to avoid adaptation.

As we previously said, in this work, we have introduced novel nat-
uralistic MI movements for aircraft pilots, See Fig. 3. In the first
experiment, if the arrow points to the right, the user must imagine
the same movements that move the aircraft to the right. It involves
the movement of a joystick to the right by the right hand, and
also, the movement of the right foot to press a pedal, and to return
back the left foot to avoid undesired yaw. If the arrow points left,
the user must imagine the same movements that move the aircraft
to the left. It involves the movement of a joystick to the left by the
right hand, and also, the movement of the left foot to press a pedal

Channel locations

Figure 2 Location of the electrodes
according to the 10/20 system.
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Figure 3 Timing of the experiment and motor imagery task for
the first and second experiments.
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and the right foot to return the other pedal to avoid undesired yaw.
It requires that the user must imagine the movement of the right
hand and feet at the same time depending on the turn direction.
Each Subject performs 3 sessions, with one week of separation
between sessions. The first session was composed by 2 runs of 40
trials (20 left and 20 right). The first 40 trials were used to train
the classifier and to adjust the CSP parameters. Then, for the other
40 trials there was a bar feedback in real time to help the user to
improve their BCI response. In the second and the third sessions,
there were three runs of 40 trials. This has been used in the first 40
trials to adjust the system and through the other 80 trials the users
viewed feedback. Thus, are 80 trials for the first session, 120 trials
for the second, and 120 trials for the third session respectively.

The second experiment had a different MI task. If the arrow points
to the right, the user must imagine the same movements that move
the aircraft to the right as in the first experiment. However, if the
arrow points to the left, the user must imagine pressing the radio
button with the left hand and then asking for permission to land.
This is also shown in Fig. 3. In this experiment subjects also under-
took three sessions separated by one week. All sessions were com-
posed by 3 runs of 40 trials (20 left and 20 right). Thus, there are 120
trials per session. In all this sessions the first 40 trials were used to
train the system and the others showed a bar feedback to the user.

3.2. Feature Extraction

In BCI it is usual to apply one method to extract features.
However, it is possible to implement two or more methods in
parallel. In this way, the system could combine and exploit the
corresponding information from each procedure and this could
improve the classifications results [35]. In this work, the software
of the FE module, which was specifically implemented for these
experiments, can compute in parallel three well-known FE meth-
ods for MI tasks: the band power in two different frequency bands
of the EEG data, Common Spatial Pattern (CSP), and the AARs.
This section introduces the basic notions of these representative FE
methods that, according to Bashashati et al. [36] and Fabian Lotte
[37], have been widely applied in many BCI systems for MI tasks.
Their software implementations are available in the BioSig tool-
box (http://biosig.sourceforge.net/) which is an opensource refer-
ence software for biomedical signal processing and, in Lottes’s web
page (https://sites.google.com/site/fabienlotte/). Note that detailed
descriptions of these FE methods are available in [37,38].

* PSD features [39]. Four frequency bands are identified for
interpretation of the EEG signals [40,41] but, as it is usual in
BCI systems, only the most reactive frequency bands for MI
have computed [39]: the alpha (8-12 Hz) and beta range
(16-24 Hz). Then, for each EEG signal, two BP features are
computed as the energies of the alpha and beta bands.

» CSP parameters. CSP is a spatial filtering. The purpose of
spatial filtering is to combine the signal from several sensors,
usually by using a linear combination, to reduce the high
number of channels to a small number of virtual channels. The
CSP algorithm optimizes coefficients of the filter by making the
variance of the EEG signal maximum for one class and minimal
for another, which is equivalent to highlighting the differences
and minimizing the similarities [37]. Usually, several CSP filters
are used as it is possible to determine the coefficients rapidly by

using the Generalized Eigen Value Decomposition. In this case
for each EEG signal two features are added corresponding to
the two largest and lowest eigenvalues of the CSP optimization
problem [3]. The spatial filtering is commonly used as the CSP
algorithm because it offers great results [37].

* Adaptive Autoregressive (AAR) coefficients [42]. The AAR
modeling is an evolution of the AR modeling. In AR modeling,
each input sample is predicted by a weighted linear combination
of the previous p samples, where p denotes the model order.
These coefficients are computed using all the samples and get
the coefficient vector to predict the next sample. However, in
AAR modeling, the coefficient values are continuously updated
to get a more accurate estimation. In this work, the AAR
coefficients have been estimated using the Kalman filter
algorithm. After consulting the literature and based on our
previous experimental works [18-20], p was set to 6.

3.3. Dimensionality Reduction of EEG
Features

Once features were extracted from the EEG signals, Dimensionality
Reduction can be made by Feature Transformation (FT) to a low-
dimensional data space [43-46]. In FT approaches, all input vari-
ables are required to obtain the reduced feature space. The different
FT techniques can be categorized as either unsupervised or super-
vised depending on whether or not they use class-membership
information while computing the r-dimensional space [45]. Unsu-
pervised approaches may not be necessarily useful in classification
problems since they do not take the target information into account.
The best known and most widely used feature mapping methods is
PCA. The following section describes this approach:

3.3.1. Principal component analysis (PCA)

PCA is an unsupervised method that computes a linear mapping
to achieve a low-dimensional representation of the original data in
which the amount of variance is maximal [46,47]. In general, PCA
has been successfully applied in many scientific fields, and it also
receives much attention in BCI experiments [20,36,48]. It is widely
known that this linear transformation is made by an orthogonal
basis from the top eigenvectors (i.e., principal components) of the
data covariance matrix, i.e., the eigenvectors corresponding to the
largest eigenvalues retained.

3.4. Classifiers

Several classification approaches were tested with EEG signals such
as Linear classifiers, SVM, KNN classifiers, or DTs. Linear Classi-
fiers were applied with good results and could be considered as a
standard classifier. In this work, four of them have been tested. A
description of these classifiers is presented in the following lines:

3.4.1. Linear discriminant analysis

LDA is a very simple classifier that provides acceptable accuracy
without high computation requirements. LDA is very common in
the BCI community and is a good choice for designing online BCI
systems with a rapid response, but limited computational resources.
Nevertheless, it can lead to completely erroneous classifications in
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the presence of outliers or strong noise [2]. For a two-class problem,
LDA assumes that the two classes are linearly separable. According
to this assumption, LDA defines a linear discrimination function
which represents a hyperplane in the feature space to distinguish the
classes. The class to which the feature vector belongs will depend
on the side of the plane where the vector is found [2].

3.4.2. Support vector machine

SVM is a well-known classification algorithm which can find a deci-
sion hyperplane with the maximum distance to the nearest data
points of each class. SVM has been used to classify feature vectors
for binary and multiclass problems. As a result, this method has a
high generalization power. The decision function of SVM is fully
specified by a subset of the training data points, which leads to a
sparse solution for SVM [49]. The cost function of SVM is a convex
function that leads to an optimal solution for the optimization task.
The mathematical formulation of SVM gives us the ability to use
the kernel trick to map the original finite dimensional space into a
destination space with much higher dimensions. Such a classifier
is regarded as a linear classifier since it uses one or several hyper-
planes. Nevertheless, it is also possible to create an SVM with non-
linear decision boundary using a kernel function [2]. In this work,
we have used a Linear Kernel.

3.4.3. Decision tree

The DT is used to predict the response by the recursive partition
of the instance space. The appealing point of DT are the rules that
assist in reaching the final mode. DT’s structure is like a tree along
with some nodes. Each node can have two possibilities either a leaf
or a decision node. It begins from the root just like the tree and
reaches the endpoint that is a leaf node, which delivers the classi-
fication of the data into a class. In our case, we use Gini’s diversity
index (GDI) as an optimization criterion [42].

3.4.4. KNN

KNN K-nearest neighbor classifiers (k-NNC) are based on the prin-
ciple that the features corresponding to the different classes will
usually form separated clusters in the feature space, while the close
neighbors belong to the same class. This classifier takes k metric
distances into account between the test samples features and those
of the nearest classes to classify a test feature vector. The metric dis-
tances are a measure of the similarities between the features of the
test vector and the features of each class [2].

4. EXPERIMENTAL WORK

The experiments aimed to test new MI-BCI task for BCI systems
by novice subjects. In this study, EEG signals have been collected as
described in Section 2.1. In this work, two strategies to classify the
signals have been developed. The first one is to compute the results
with standard methods PSD + LDA and CSP + LDA. The second is
to adapt the FE and classification stage to the user in each session.
Figure 4 shows the Methodology of this work.

In order to adapt the system to the user, three different techniques
of features extraction were used: PSD, AAR, and CSP, and also a
combination of these. To get the features, and to take in to account
the variability of the EEG signals, in the first step, it have been

Methodology

1 Second of EEG

J— . Classifiers
{ Feature
reducton | _svm |

Figure 4 Methodology of the offline analysis.

computed from 4 windows of 1 second each trial as in other previ-
ous research works [8,17,19,50]. Subsequently, each average feature
was placed in a single vector. Thus, there are 10 features from each
channel and 80 in each trial. Then, a well-known Feature Reduc-
tion approach, PCA, was implemented. Regarding the classifier, the
authors used MATLAB Statistics and Machine Learning. MATLAB
offers a variety of algorithms to classify the features. After several
trials, it was decided to keep the four most relevant classifiers (the
others showed poor results) to perform the offline analysis. In this
work, LDA, SVM, k-NN, and DT Classifier were used. To carry out
fair comparisons with the proposed approach, we used a Leave One
Out-Cross Validation procedure for performance evaluation [51],
this avoids undesirable shifts from the random selection of training
and test sets. It is appropriate since the amount of available data is
limited. In this validation technique, the system is trained using all
the trials except one and predicts the class of the last remaining trial.
14 subjects (7 Pilots and 7 non-pilots) were used for the first exper-
iment and 8 pilots for the second one and, each subject have done
3 sessions. For each one, the analysis was automatized to allow the
computation of all the combinations of features (with or without
feature reduction) and classifiers and select the best option for each
subject, taking into account the mean value of the three sessions.
Thus, 44 combinations were tested for each one to get an adapta-
tion of the system to the user. Therefore, the system is customized
to individual users.

4.1. Experimental Results

In both experiments, 44 combinations of “Feature + Feature reduc-
tion + Classifier” for all the subjects have been computed. Also, the
results using standard methods have been computed. The detailed
results are presented in the following section:

4.1.1. First experiment

For the sake of clarity and due to space restrictions Table 2 shows
the results of the three sessions of a first experiment for the standard
classifier LDA and two of the most used FE methods, CSP, and LDA.
These results are a good reference to show the evolution of the users.
As was explained before, 80 trials have been evaluated for session 1,
and 120 trials for sessions 2 and 3.

Different articles have presented different thresholds for BCI “effi-
ciency, but a reference value for acceptable EEG-BCI results is 70%
[52-55]. Taking in to account this reference value, results are not
high. In Session 1 there are no values higher than 70%, and S3 (67%)
gets the best clasification accuracy results using LDA as a classifier
and CSP as an FE. In the second session, only S10 surpass 70% using
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both FE methods. However, in Session 3, S8, S9, S10, and S14 get
values over 70%. Therefore, it is evident that there is a learning pro-
cess of the users.

Then, we performed an automatic system that executed a complete
analysis using many features extraction techniques and classifica-
tion techniques, and we can extract the best results out of these com-
binations and select the best method for each subject.

Table 3 shows Best Combination of Feature + Feature Reduction
+ Classifier for each subject. This approach shows results slightly
better than using CSP filtering and LDA classification. It is common
in BCI systems that algorithms perform differently depending on
the subject. Therefore, using these combinations of techniques, we
tune the system to the user to get adaptation and to improve the
results. With this approach, in the first Session S4 (BP + AAR +
PCA + DT), $9 (CSP + AAR + DT), and S13 (BP + PCA + LDA)
pass over 70% of classification accuracy with 70%, 70%, and 72%,
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respectively. In Session 2 S7 (AAR + CSP + PCA + SVM), S10 (AAR
+ CSP + PCS + SVM), S11 (BP + AAR + CSP), and S13 get 71%,
79%, 70%, and 82%, respectively. Finally in Session 3 S10, S13, and
S14 (BP + CSP) get 90%, 75%, and 71%.

Figure 5 shows a bar diagram, with average values of the First
Experiment obtained with LDA as classifier and PSD or CSP as
FE approach for CG and PG and obtained with the Best Combi-
nation. LDA + PSD shows the lower values for the first and sec-
ond session for both groups. However, in the third session, LDA +
CSP shows the lower level and LDA + PSD the intermediate value
for PG. LDA + CSP combination achieves intermediate values for
the first and second session, and BC always gains the best values
for both groups. The results are quite similar for pilots and non-
pilots for the first and seconds sessions. The difference does not look
significant, however, for the third session, pilots have improved
their results whereas non-pilots results are similar to first and

Table 2 Performance classification accuracy results in % using a LDA classifier and two classical FE

methods, PSD, and CSP for the first experiment.

Session 1 Session 1 Session 2 Session 2 Session 3 Session 3
Subject PSD CSP PSD CSP PSD CSP
S1 0.65 0.55 0.51 0.53 0.53 0.61
S2 0.40 0.56 0.45 0.51 0.40 0.62
S3 0.52 0.67 0.51 0.66 0.58 0.60
S4 0.54 0.55 0.37 0.56 0.47 0.62
S5 0.55 0.59 0.54 0.60 0.49 0.54
S6 0.50 0.59 0.55 0.63 0.52 0.69
S7 0.44 0.57 0.53 0.69 0.57 0.64
Average control 0.51 0.58 0.49 0.60 0.51 0.62
S8 0.44 0.61 0.51 0.59 0.64 0.70
S9 0.45 0.59 0.52 0.63 0.77 0.79
S10 0.44 0.50 0.70 0.73 0.82 0.86
S11 0.56 0.62 0.49 0.60 0.55 0.63
S12 0.55 0.50 0.53 0.62 0.61 0.55
S13 0.49 0.46 0.55 0.70 0.47 0.62
S14 0.61 0.65 0.55 0.57 0.62 0.71
Average pilots 0.50 0.58 0.55 0.60 0.64 0.69
Average All 0.51 0.57 0.52 0.62 0.58 0.66

LDA, Linear Discriminant Analysis; FE, Feature Extraction; PSD, Power Spectrum Density; CSP, Common Spatial Pattern.

Table 3 Classification accuracy results in % of the first experiment in each session, using the best

method as a Feature Extraction (FE), the best Feature Reduction (FR) technique, if it improves results,

and the best method as a classifier for each subject.

Name FE FR Classifier ~Session1 Session2 Session 3
S1 AAR + CSP No SVM 0.55 0.63 0.62
S2 AAR + CSP PCA SVM 0.57 0.60 0.61
S3 AAR No LDA 0.67 0.66 0.60
S4 PSD + AAR PCA Tree 0.70 0.51 0.56
S5 PSD + AAR + CSP No LDA 0.60 0.65 0.57
S6 CSP No LDA 0.59 0.63 0.69
S7 AAR + CSP PCA SVM 0.56 0.71 0.64
Average control  Best M. Best M. Best M. 0.61 0.63 0.61
S8 CSP No SVM 0.65 0.58 0.67
S9 CSP + AAR No Tree 0.70 0.51 0.56
S10 AAR + CSP PCA SVM 0.55 0.79 0.90
S11 PSD + AAR + CSP PCA SVM 0.69 0.70 0.61
S12 PSD + AAR No KNN 0.61 0.54 0.67
S13 PSD LFDA LDA 0.72 0.82 0.75
S14 PSD + CSP No SVM 0.65 0.58 0.71
Average pilots ~ Best M. Best M. Best M. 0.66 0.66 0.73
All Best M. Best M. Best M. 0.63 0.64 0.67

FE, Feature Extraction; AAR, Adaptive Autoregressive Coefficient; LDA, Linear Discriminant Analysis; KNN, K-Nearest
Neighbor; CSP, Common Spatial Pattern; PCA, Principal Component Analysis; SVM, Support Vector Machine; LFDA, Local
Fisher Discriminant Analisys; FR, Feature Reduction; PSD, Power Spectrum Density.



G. Rodriguez-Bermudez et al. / International Journal of Computational Intelligence Systems 12(2) 937-946 943

Mean values results 1° Experiment

0,8

B LDA+PSD
M LDA+CSP
BC
192 1¢ pi 29 30 30
Session. Session. Session. Session. Session. Session.
CG PG CG PG CG PG

Figure5 Average value results of the first experiment.

second sessions. To conclude properly on the significance of this
difference, the MATLAB function “t-test” was used. The tested
hypothesis is that the means of the two samples are equal. The sig-
nificance level is 5%. Results show that there is no significant differ-
ence between PG and CG groups computing the results with LDA +
PSD, LDA + CSP, or BC for each subject on the first and second
session. In Session 3, the difference in the results is significant for
all cases.

4.1.2. Second experiment

For this experiment, the offline analysis was similar as the one per-
formed for the first experiment and the results of the two experi-
ments could be compared. Therefore, we can extract the same two
tables as for the first experiment: the first using the PSD and CSP
Features, and the LDA classifier, see Table 4 and the second using
the best method for each subject, see Table 5.

In this experiment results appear higher. Looking at Table 4 In
Session 1 S15 (71%) S16 (81%), S20 (71% and 73%) achieves val-
ues higher than 70%. In Session 2 S16(87%), S20 (77% and 83%),
and S22 (74%) gets overpass 0.70%. Finally, in Session 3 S16(87%),
S17(77% and 87%), S19 (74%), S20 (91% and 95%), and S22 (73%)
surpasses 70%. Then, the system is tuned and it extracts the best
results selecting the BC for each subject.

Table 5 shows BC results for the each subject. This approach
shows results slightly better than using CSP filtering and LDA
classification. With this approach, in the first Session S15, S16, S19,
S20 exceeds 70% of classification accuracy with 75%, 81%, 72%, and
89%, respectively. In Session 2 S16, S19, S20, and S22 reach 83%,
74%, 87%, and 74%, respectively. Finally in Session 3 S16, S17, S19,
S$20, and S22 achieve 87%, 91%, 78%, 95%, and 73%, respectively.

Figure 6 presents a graph with average results using LDA + PSD,
LDA + CSP, and BC of the second experiment. As in the first exper-
iment: BandPower provides low results whereas CSP based results
are closer to the result using the BC for each subject. Also, we
observe that the results improve in the second and third sessions.

Figure 7 is a graph bar picture to observe the differences of results
between the two experiments. It shows that the results of the sec-
ond experiment are higher than those in the first experiment.
On the third session, the average result is above 77%. Statistical
comparison of the results between first and second experiment
shows that for all methods the test concludes that the results are
significantly higher for the second experiment. Therefore, a BCI

system based on the movements from the second experiment is eas-
ier for pilots to control.

Table4 Peformance classification accuracy results in % using a LDA
classifier and two clasical FE methods, PSD, and CSP for the second
experiment.

Session 1 Session 1 Session 2 Session 2 Session 3 Session 3
Subject PSD CSP PSD CSp PSD CSP

S15 0.55 0.71 0.64 0.69 0.66 0.69
S16 0.63 0.81 0.77 0.83 0.60 0.87
S17 0.37 0.51 0.53 0.54 0.77 0.87
S18 0.42 0.62 0.53 0.54 0.63 0.64
S19 0.65 0.67 0.55 0.65 0.39 0.74
S20 0.71 0.73 0.80 0.86 0.91 0.95
S21 0.45 0.60 0.31 0.47 0.57 0.57
S22 0.50 0.58 0.57 0.74 0.47 0.73
Average 0.53 0.65 0.58 0.67 0.62 0.76
control

LDA, Linear Discriminant Analysis; FE, Feature Extraction; PSD, Power Spectrum Density;
CSP, Common Spatial Pattern.

Table 5 Classification accuracy results in % of the second experiment in
each session, using the best method as a FE, a feature reduction, if it
improves results, and the best method as a classifier for each subject.

Name FE FR Classifier Session 1 Session 2 Session 3
S15 CSP No SVM 0.75 0.69 0.69
S16 CSP No LDA 0.81 0.83 0.87
S17 PSD + CSP No Tree 0.64 0.62 0.91
S18 PSD + CSP No SVM 0.60 0.57 0.67
S19 CSP No Ensemble 0.72 0.74 0.78
S20 CSP No Tree 0.89 0.87 0.95
S21 AAR + CSP PCA LDA 0.56 0.57 0.55
S22 CSP No LDA 0.58 0.74 0.73
Average Best M. Best M. Best M. 0.69 0.71 0.77

LDA, Linear Discriminant Analysis; FE, Feature Extraction; PSD, Power Spectrum Density;
CSP, Common Spatial Pattern; AAR, Adaptive Autoregressive Coefficient; SVM, Support
Vector Machine.

Results Evolution in 22 Experiment
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Figure 6 Average results using Linear Discriminant Analysis (LDA) +
Power Spectrum Density (PSD), LDA + Common Spatial Patterns (CSP),
and best combination of the 2° experiment.
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Figure 7 Average results of the 1°, 2°, and 3° session of the 1° and 2°
experiments using Linear Discriminant Analysis (LDA) + Power
Spectrum Density (PSD), LDA + Common Spatial Patterns (CSP), and
best combination for each session.

5. CONCLUSIONS

To explore new MI tasks for Aircraft Pilots, in this work, two exper-
iments were developed with novice users in BCI experiments. In
these experiments, standard methods have been used and to tune
the system to the user, 3 FE methods (PSD, AAR, and CSP) a
feature reduction technique, PCA and, 4 classifiers (LDA, SVM,
K-NN and DT) and all combinations of these have been applied.
The first experiment collected signals from 14 novice BCI users, 7
of them without any experience as aircraft pilots (as CG), follow-
ing new MI commands to make a left or right movement of a plane.
Results show that users with previous flight experience are better
fitted on the third session than non-pilots to control a BCI system
based on these imagery tasks. However, this result was obtained on
the third session. For the first and second sessions, it was not the
case, and there is no significant difference between groups. There-
fore, it appears that pilots can control the system faster, but to do
that, they need to be trained to use the system properly.

The second experiment collected signals from 8 aircraft pilots doing
MI of the right movement and asking permission to land. It shows
that pilots controlled the system using speech on the left arrow and
the turn to the right on the right arrow better than with turns on
both sides. We observe that several subjects achieve very high scores
(S16 87%, S17 91%, and S20 95%): these subjects could control a
system based on this MI paradigm. Thus, these are more discrimi-
native tasks.

Finally, these experiments showed that for now, to control a sys-
tem using precise and complicated movements is a difficult task.
It can be noted that our experiment only considered discriminat-
ing two different movements, however controlling a plane involves
more movements than simply 2: the pilot must control the stick to
move it from left to right, front to back and also the pedals, the
thrust and has to manage the radio and many other systems. Nev-
ertheless, these experiments have shown that we could imagine a
new interface providing other methods for conducting experiments
or providing an output to control a system using MI tasks detected
through EEG recorded signals.

In particular as a future work, we would like to do more training
sessions to evaluate the evolution of the results. Also, as a more
ambitious experiment, we would like to develop a system that allows
airplane pilots to control drones using naturalistic movements with
optimized MI paradigms.
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