Accidental Teachers’ Mistakes in Solving Physics Problems: Teachers Didactogenic

Riki Perdana
Yogyakarta State University
Yogyakarta, Indonesia
riki13pd@gmail.com

Jumadi
Yogyakarta State University
Yogyakarta, Indonesia

Diah Mahmuda
Tanjungpura University
Pontianak, Indonesia

Abstract—There are many studies was conducted to analyze the relation between teacher’s knowledge and student’s achievement. But, none of the study that discuss about teachers accidentally-mistakes in solving physics problem. The aim of this study is to describe didactogenic or the teacher’s mistake which accidentally happened that can cause students misconception based on gender. The participants of this study were 6-man teachers and 6-woman teachers who represented six subdistricts in Pontianak City. They were asked to assess about several physics’ problems by answer, correct and incorrect. Three concepts in the study were Newton’s First Law, Newton’s Second Law, and Newton’s Third Law. There were eight questions represented the concepts. The Results reveals most of teacher’s comments have didactogenic both men and women. There are five (5) men and four (4) women had didactogenic on Newton’s First Law, All participants on Newton’s Second Law, six (6) men and five (4) women on Newton’s Third Law. According to the results of this study, the man teachers have more didactogenic than woman teachers. Incorrect answer can make teachers do more didactogenic than correct answer. This study recommends in order to analyze cause and impact of teachers didactogenic, and how to decrease it.

Keywords—teachers didactogenic, newton’s law

I. INTRODUCTION

Teacher quality is one of the fundamental factors that give many influences on student’s achievement [1]. Teacher ability on class management can improve student’s achievement [2]. On the contrary, “bad teacher” can decrease students’ motivation [3]. Teachers must have good conceptions when teaching on the class [4]. Teacher who do a mistake on teaching show negatif impact for students’ achievement [5]. However, many studies found that many teachers have mistakes on any concepts[6].

When doing a mistake on describing a concept, teacher also create student misconceptions[7]. Students misconceptions has negative influence on students’ motivation[8]. Not only teacher, text book also can cause students misconceptions [9][10]. Because of that, a teacher must have good understanding about the concept, studying from the book or others reference.

Teachers mistakes has happened on almost the subject, especially in physics. On this subject, there are many teachers mistake even they have misconceptions, such as Newton’s Law [11], object’s moving [12], simple pendulum [13]and astronomy [14]. Its difficult to find teachers mistakes on physics, because subject or participants on many studies are not teacher. Most of them are just pre-service teachers that from college environment such as on study ofoptice geometry [15]static electric [16], nature of matter [17], simple electric circuit[18], electric current [19], electric field [20], Newton’s Law [21], astronomy [22][23][24]and heat and temperature [25].

The study of teacher mistake or misconceptions on physics educations it’s just a few, because of an opinion that teacher has manage the concepts correctly [26]. Beside of that, the best method to describe teachers mistake is still not found. The method like diagnostic test, one tier [27], two tiers [28][29], three tiers [30], four tiers [31], open ended questions [32], and interview [33] are not effective. Because, those method just used to pre-service teacher and student, not to native teacher. Researcher think and worried that teacher is not cooperative when they know as a participant on the study. Because of that, the best method to describe accidental teachers’ mistakes is needed.

One of the methods that can use to describe teachers’ mistakes is ask them to assess students answer about any concepts [34]. In this method, teachers will don’t know that they are as a participant or subject on the study. This study applies this method, and ask the teacher to assess several problems with answers that make by researcher. Teacher will write their conceptions about any problems that given. There is a possibility, teacher will be doing accidentally mistakes. This accidentally mistakes (on understanding and describing a concept) can cause student misconceptions. The term of this condition is called teachers didactogenic. Research question in this study are:

1. What is the type of physics teacher didactogenics on force and motion?
2. How is physics teacher didactogenic based on gender?

The rest of this paper is organized as follow: Section II presents a rudimentary on didactogenic and misconceptions. Section III describes proposed research method of this work. Section IV presents the obtained results and following by discussion in section V. Finally, Section VI concludes this work.

II. DIDACTOGENIC AND MISCONCEPTIONS

Teachers can make an accidentally mistakes when teach any subject on the class. The accidentally mistakes can called teacher didactogenic. Didactogenic is an accidentally mistake that doing by writer or teacher when describe a concept and can make reader or student have misconceptions [34]. Althoug, most of the Pre-service teacher accidentally mistake is about s understanding and describing a concept. Term of misconceptions is not used,
because it has negative sense for teacher or any professional program (writer, lecture, doctor, etc).

In physics, there are some study that found teacher and writer accidentally mistake. The accidentally mistake is inconsistently on predict [35]. On the third Newton’s Law, teacher didn’t write negative mark (-) when describing the formula [36]. On textbooks, Zajkov, et al. in [10] found that any writers had done accidentally mistakes in electric current and magnetic field that can create misconceptions. Misconception is a condition when someone or students have different conceptions that allowed by the scientist or professional in a field[37]. Term of misconception is also used to describe incorrect convictions about a concept based on th experience [38]. Misconceptions also have negative impact on student’s achievement [8]. Then, misconceptions are a conception that different with scientist and has negative impact on student achievement.

III. PROPOSED METHOD

This study is qualitative research that focus on teachers accidentally mistake that represented by their comment on several physics’ problems. They ask to assess any several physics problems about force and motion. The comments of teacher become data in this study. Population in this study is all physics teachers on senior high school in six subdistrict Pontianak City. Total of the teacher cannot be determined, because not all the teacher has been recording on Educational Official Pontianak. Just 58 teachers that record on this department.

Purposive sampling is used on this study. It is non-probability sampling, where the quantity of sample is not considered. In purposive sampling, sample that selected based on criteria [39]. Participant on this study was 12 physics teachers that represented six (6) subdistricts on Pontianak City. The criteria on this sampling was all the senior high school physics teachers from private or national school that teaching minimal one (1) year in six subdistricts.

Instrument of this study is a sheet of observation heading of teacher comments about several physics problem with answer. The instrument was adapted from the study that doing by [27]. There are two (2) procedures of this study, planning and implementation:.

A. Planning Phase

The stages of this phase are (1) collecting the information about teachers didactogenic (2) Searching the question that will be adopt. (3) doing and answering the questions (4) Testing the validity of instrument (5) Testing the reability of instrument.

B. Implementation Phase

The stages of this phase are (1) asking 12 teachers to assess the several problems with answers about force and motion (2) analyze comments of the teachers (3) drawing the result of this study.

IV. RESULTS

Data was analyzed to describe teachers didactogenic about force and motion (Newton’s Law) based on gender. Table I show the number of men teachers who have didactogenic and Table II women teachers. These tables I and II shows teachers didactogenic on four concepts.

Table I. Men Teachers who have didactogenic on every concepts

<table>
<thead>
<tr>
<th>Teacher Code</th>
<th>First Newton’s Law</th>
<th>Second Newton’s Law</th>
<th>Third Newton’s Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 3</td>
<td>Item 4</td>
<td>Item 5</td>
<td>Item 6</td>
</tr>
<tr>
<td>NH</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AK</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SM</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HY</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>KS</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RV</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Table II. Women Teachers who have didactogenic on every concepts

<table>
<thead>
<tr>
<th>Teacher Code</th>
<th>First Newton’s Law</th>
<th>Second Newton’s Law</th>
<th>Third Newton’s Law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 3</td>
<td>Item 4</td>
<td>Item 5</td>
<td>Item 6</td>
</tr>
<tr>
<td>RN</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LS</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ET</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SR</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NU</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

A. First Newton’s Law

On first newton’s law, item 3 and 4 there are five (5) men teachers have didactogenic. Two (2) teachers have incorrect conceptions and three (3) teachers give inconsistence comment. There are seven (7) comments show didactogenic. One of the comments is “term of stop must be described; indeed, the plan will stop moving if the machine is turned off”.

There are three (3) teachers give inconsistence comment, show that they are hesitant to write the concept of first newton’s law. It can cause student misconceptions. For example, item 3 a teacher said, “this object will stop moving, it’s caused by the machine is turned off and this object stay on the space far away from gravitation force”. His impression shows that force is a property of an object, an object has force and when it runs out of force it stops moving. But, on item 4 shows that his impression contrast with their impression on item 3. They think that although an object loss of the force, they still move.

On the same concepts, therea are five (5) women teachers have didactogenic. Three (3) teachers have incorrect conceptions and two (2) teachers give inconsistence comment. There are eight (8) comments show didactogenic. One of the comments is “when an object lost their force, this object will stop immediately because (ΣF=0)”. There are two (2) teachers who give inconsistence comment. One of the comments shows that when an object lost their force, this object will stop immediately (item 3), but on another (item 4) their impression show that it is not necessarily the resting object lost their force.

Based on the result, on first Newton’s law, the number of teachers didactogenic from men and women teachers are
same (five men teachers and five women teachers). But there is a different thing from the number of incorrect conceptions and inconsistence comments from men and women teachers. The teachers who have incorrect conceptions think that “when an object lost their force, it will stop moving immediately”.

B. Second Newton’s Law

On second newton’s law, item 5 and 6, all participants (six men teachers) has didactogenic. Two (2) teachers have incorrect conceptions and so do teachers give inconsistence comment. There are eight (8) comments show didactogenic. Most of participants think that “the motion of an object is always in the direction of the net force applied to the object”. One of the comments that contain didactogenic is “The diagram is incorrect, it must be:

From this comment, we know that its impression show that the motion of an object is always same with the direction of the net force.

There are two (2) teacher give inconsistence comment. For the example, item 5 “the motion of the ball is slowed down by friction force and after moving on several time, the ball stop at B, and the diagram is

From the diagram, we know that the teacher thinks the direction of the net force same with the direction of an object. But, on item 6, his/her impression show that the direction of the net force is not always same with the direction of an object.

On the same concepts, there are six (6) women teachers have didactogenic. Most of them give inconsistence comments and one (1) teacher has incorrect conceptions. There are seven (7) comments show didactogenic from women teachers. One of these comments is “Andi give the force to the ball that is bigger than the friction force, so the ball move to B and the diagram is:

Almost the participant (5 female teachers) give inconsistence comments. Third impression is the direction of the net force always in the direction of the motion of an object (item 5). But, on the another (item 6) they think contrast from before. Based on the result, all participant has didactogenic in second Newton’s law. But there is a different from amount of teacher’s incorrect conceptions and inconsistence comments. Teacher who have incorrect conceptions think that “the motion of an object is always in the direction of the net force applied to the object”.

C. Third Newton’s Law

On third Newton’s Law, item 1 and item 2, all men teachers have didactogenic. They have incorrect conceptions about this concept. They think that large objects exert a greater force than small objects and agree with the answer that given to them although the answer describe incorrect concepts.

On the same concepts, there are four women teachers who have didactogenic. They have incorrect conceptions. One of the comments is “based on second newtons law, mass is comparable with force. So, the force exert by Andi is greater than the force exerts by tube”.

Based on the result, there are the different number of men and women teachers that have didactogenic about this concept, six (6) men teachers and four (4) women teachers. The didactogenic about third newtons law from all participant is large objects exert a greater force than small objects

V. DISCUSSION

This study aims to describe physics teachers didactogenic based on gender about force and motion. Data was obtained based on teachers comments about several physics problem with answer that maked by researcher. In this study, three concepts that investigated are first newton’s law, second newton’s law and third newton’s law.

There are five (5) men teachers and so do women teachers have didactogenic on fiet newton’s law. They think that Force is a property of an object. An object has force, and when it runs out of force it stops moving. “Ref.[40]” found similar result about teachers’ conceptions, their impression is motion is force, no motion no force. It causes students misconceptions[38]because the accidental teachers mistake or teachers didactogenic.

On the second newton’s law, all participant has didactogenic. They impression is the motion of an object is always in the direction of the net force applied to the object. This result is same with [41]and [42]. Teachers think the direction of the net force is same with the direction of an object motion. It is caused by the impression about intrinsic force that make object alway move based on the direction of the net force act on the object [27].

On the third newton’s law, there are six (6) men teachers and four (4) women teachers have didactogenic. They impression is large objects exert a greater force than small objects. It is similar with [42] who found same teachers’ conceptions is like that.” Ref.[44]” also found 75% from the sample (teachers) that think large object exerts greater force.

There are some reasons why teachers have didactogenic.” Hestenes, et al. in [27]” said that because of the impression of active force or impetus. The impetus can make an object always move. The teacher is confused to decide a pair of force. As an additional, he said that interaction factor from the example of event, such bigger object will show greater force. Teachers also think that force is property of an object that appear from the interaction of two object [45] and often associate a concept to another concepts [46]. Other reason is teacher feel difficulty to determine the direction of force that different with the
direction of an object [41]. Teacher also dont know about
the meaning of term net force [46].

VI. CONCLUSION
In this study, all participants (12 teachers) have
didactogenic. Based on gender, men teacher has more
accidental mistakes than women. As instrument, incorrect
answers are potential to show teachers didactogenic. There
are two types of teachers didactogenic about Newton’s
Law in this study. The types are incorrect conceptions
(misconception) and inconsistence when give comments
about the concepts.

ACKNOWLEDGMENT
This research was supported by the faculty of education in
Tanjugpura University and Post Graduate Program in
Yogyakarta State University.

REFERENCES
student achievement: Evidence from a sample of Dutch twins.
Management Intervention Based on Teacher Training and
Performance Feedback on Outcomes of Teacher-Student Dyads in
Inclusive Classrooms. Educational Sciences: Theory and Practice,
15(3), 739-758.
Fahlman, M. (2015). The relationship between teacher burnout and
student motivation. British Journal of Educational Psychology,
85(4), 519-532.
structures for nature of science and scientific inquiry: Conceptions
and classroom practice. Journal of Research in Science Teaching,
51(9), 1150-1184.
student achievement: the influence of teachers’ pedagogical content
knowledge in statistics. International Journal of Science and
Mathematics Education, 14(7), 1339-1357.
misconceptions in science and engineering distinctions: Reflections
on modern research examples. Journal of Science Teacher
Education, 27(6), 625-647.
misconceptions in the learning of the concept of angle. Jornal
Internacional de Estudos en Educacion Matematica, 4(2).
Pengaruh Model Pembelajaran Kooperatif Teknik Make A Match
Terhadap Motivasi Belajar dan Hasil Belajar IPS. Jurnal Pendidikan
Dasar, 5(1), 1-12.
curriculum statements and textbooks on misconceptions: The case of
evolution. Education as Change, 20(1), 1-23.
Textbook-Caused Misconceptions, Inconsistencies, and
Experimental Safety Risks of a Grade 8 Physics Textbook.
International Journal of Science and Mathematics Education,
15(5), 837-852.
Conceptual Understanding of Newton's Laws of Motion (Doctoral
dissertation).
concerning three natural phenomena. Journal of Research in Science
Teaching, 41(5), 432-448.
Misconceptions of Mexican teachers in The Solution of Simple
service and In-service Teachers about Basic Astronomy
Education, 10(5).
Development and application of a four-tier test to assess pre-service
physics teachers’ misconceptions about geometrical optics. Research
[16] Hermita, N., Sudandi, A., Syaodih, E., Samsudin, A., Johan, H.,
Rosa, F., .. & Safirri, D. (2017, September). Constructing and
Implementing a Four Tier Test about Static Electricity to Diagnose
Pre-service Elementary School Teacher Misconceptions. In Journal of
Publishing.
misconceptions about states of matter. Educational Research and
Reviews, 6(2): 197-200.
[18] Önder, F., Şenyiğit, Ç., & Silay, I. (2017). The Effects of
Misconceptions on Pre-service Teachers’ Ability to Constructing
Simple Electric Circuits. European Journal of Physics Education,
8(1).
Academic Knowledge and Misconceptions about Electric Current.
Cognitive Structures about ‘Electric Field’: A Free Word
Association Test Study. Journal of Education and Training Studies,
51(11), 146-156.
Misconceptions on Force and Motion Among Physics Pre-service
Teachers in UPSI (Doctoral dissertation, Universiti Teknologi
Malaysia).
method supported by educational technologies on pre-service science
teachers’ misconceptions on basic astronomy subjects. Journal of
[23] Konur, F. (2015). Exploring Seventh-Grade Students’ and Pre-
service Science Teachers’ Misconceptions in Astronomical
Education, 11(5).
[24] Bektasli, B. (2013). The Development of Astronomy Concept Test-
Determining Preservice Science Teachers’ Misconceptions About
science teacher candidates about heat and temperature. Procedia-
Social and Behavioral Sciences, 15, 2758-2763.
biology teachers and remedial strategies for improving biology
learning. International Journal of Science Education, 20(4), 461-
477.
Inventory. The Physics Teacher, 30, 141-158.
Teachers’ Alternative Concepts in Astronomy. Science Education
Multiple Choice Questions to Diagnose Thermodynamic
Misconception of Thai and Laos Students. In Proceedings of the
12th Asia Pacific Physics Conference (APPC72) (p. 017008).
Teachers’ Misconceptions in Geometrical Optics via a Three-Tier
Misconception/Ogretmen Misconception/Öğretmen Geometrik
Optik Konusundaki Kavram Yanılışlarının Üç-Assamali Kavram Yanılışısı
Testi ile Degerlendirilmesi. Bartin Üniversitesi Eğitim Fakültesi
Dergisi, 4(1), 269.

