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ABSTRACT
Our understanding on the mechanisms of graft versus tumor/leukemia (GvT/GvL) and graft versus host (GvH) effects has
tremendously evolved within the past decades. During the search for a mechanism that augments GvT/GvL without increasing
GvH effects, natural killer (NK) cells have clearly attracted attention. Current approaches of NK cell immunotherapy for hemato-
logical malignancies involve using methods for in vivo potentiation of NK cell proliferation and activity; adoptive transfer of NK
cells from autologous and allogeneic sources [cord blood mononuclear cells, peripheral blood mononuclear cells, CD34+ stem
cells] and NK cell lines; and genetic modification of NK cells. Several cytokines, including interleukin-2 and interleukin-15 take
part in the development of NK cells and have been shown to boost NK cell effects both in vivo and ex vivo. Monoclonal antibod-
ies directed towards certain targets, including stimulating CD16, blockade of NK cell receptors, and redirection of cytotoxicity
to tumor cells via bi- or tri-specific engagers may promote NK cell function. Despite the relative disappointment with autolo-
gous NK cell infusions, the future holds promise in adoptive transfer of allogeneic NK cells and the development of novel cellular
therapeutic strategies, such as chimeric antigen receptor-modified NK cell immunotherapy. In this review, we summarize the
current status of NK cell-related mechanisms in the therapy of hematologic malignancies, and discuss the future perspectives on
adoptive NK cell transfer and other novel cellular immunotherapeutic strategies.

© 2019 International Academy for Clinical Hematology. Publishing services by Atlantis Press International B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Our understanding on the mechanisms of graft versus tumor/
leukemia (GvT/GvL) and graft versus host (GvH) effects has signif-
icantly evolved in the past decades. During the search for a mech-
anism that augments GvT/GvL without increasing GvH effects,
natural killer (NK) cells have clearly attracted attention. These
cells, which are activated to kill in the absence of a prior anti-
gen sensitization, were initially identified in 1964 [1,2]. Subse-
quently, the discovery of killer immunoglobulin-like receptors
(KIRs) and the description of the “missing self ” hypothesis in the
early 1970s enabled us to understand the success behind haploiden-
tical hematopoietic stem cell transplantations (haplo-HSCT) [3–8].
In our era of targeted therapies, natural killer (NK) cells and their
receptors are considered as promising targets within the context of
pharmaceutical and clinical research. The future holds promise in
adoptive transfer of NK cells and the development of novel cellu-
lar therapeutic strategies, such as chimeric antigen receptor (CAR)-
modified NK cell immunotherapy. In this review, we summarize
the current status of NK cell-related mechanisms in the therapy of
hematologic malignancies and discuss the future perspectives on
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adoptive NK cell transfer and other novel cellular immunothera-
peutic strategies (Table 1).

2. DEVELOPMENT AND IMMUNOBIOLOGY
OF NK CELLS

NK cells originate from a common lymphoid progenitor in the
bone marrow (BM), and initially differentiate from a pre-NK
precursor into a NK precursor. The receptors for interleukin-15
(IL-15), which stimulates NK cell development and survival, are
expressed from the NK precursor stage onwards [9]. Differen-
tiated NK cells express the specific CD56 cell marker. In flow
cytometric analysis, immature NK cells are observed as CD56
bright, CD16 (-), and do not express KIRs. These cells are mainly
localized in secondary lymphoid tissues and constitute 2%–10% of
NK cells. They proliferate in response to interleukin-2 (IL-2) and
exert immunomodulatory effects, primarily via interferon gamma
(IFN-γ), tumor necrosis factor-𝛼 (TNF-𝛼), and granulocyte-
macrophage colony-stimulating factor (GMCSF) production
[10,11]. Mature NK cells, which are CD56 dim, are predominantly
found in the circulating blood and are responsible for cytotoxic
effects. These are CD56(+)/16(+), CD3(-) large granular lympho-
cytes, and constitute only 10%–15% of circulating lymphocytes in
healthy individuals [12,13].
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Table 1 General characteristics of NK cell products.

Source(s) Processing Method(s) Advantage(s) Disadvantage(s) Potential Use(s)
Autologous
NK cells
[9, 42,
58–60]

Recipient’s peripheral
blood

CD3 depletion
Optional: CD56 selection
Optional: incubation with
cytokines (IL-2, IL-15 or
combinations)

Optional: expansion in feeder

– Ease of collection
– Minimally effective in
monotherapy

Difficulty in yielding an
adequate cell number
(may be overcome with
expansion with
cytokines; but purity
may decrease)

– May be used in
combination with other
therapies, such as anti-
KIR antibodies

Allogeneic
NK cells
[61–65]

Donor’s peripheral
blood

CD3 depletion
Optional: CD19 depletion
Optional: CD56 selection
Optional: incubation with
cytokines (IL-2, IL-15 or
mixture)

Optional: expansion in feeder

Better GvL/GvT effect
due to alloreactive
NK cells

– Risk of GvHD
– Risk of passenger
lymphocyte syndrome
and EBV reactivation
(may be reduced via
CD19 depletion)

To optimize the results of
allogeneic stem cell
transplantation (clinical
outcomes in AML are
superior if given before or
within 2 weeks after HSCT)

CB-derived
NK cells
[35, 67–69]

Umbilical cord blood
units

Co-culturing systems
and cytokine
combinations

Alternative NK cell
source

– Difficulty in yielding an
adequate cell number

– Lower activity due to
lower expression of KIRs
(may be overcome
partially by ex vivo
expansion)

Various hematologic
malignancies and solid
tumors; alone or in
combination with other
immunotherapies

BM-derived
NK cells
[35, 67–69]

Donor’s bone marrow
harvest

Co-culturing systems
and cytokine
combinations

Alternative NK cell
source

Difficulty in yielding an
adequate cell number

– Various hematologic
malignancies and solid
tumors; alone or in
combination with other
immunotherapies

– Potential for commercial
use

NK cells
obtained
from hESC
or iPSC
[35, 70, 71]

hESC or iPSC Complex systems
requiring strict GMP
criteria

– May enable to produce
large scales of universal
NK cells lacking KIR
expression

– Homogenous product

Requires complex
processing

– Various hematologic
malignancies and solid
tumors; alone or in
combination with other
immunotherapies

– Potential for commercial
use

NK cell
lines
[35, 79, 80]

– Malignant cell clones
– Seven established
lines: NK-92, YT,
NKL,HANK-1,
KHYG-1,NK-YS, and
NKG

Complex systems
requiring strict GMP
criteria

– Easy to expand
– Uniform and
reproducible

– Can be used
“off-the-shelf ”

– Concerns about in vivo
persistence and the lack
of CD16 expression

– Limited clinical efficacy

– Generally used in
preclinical research

– Only NK92 lines are
approved for clinical
research

CAR-NK
cells
[9, 58,
81–85]

NK cell lines,
PB-derived NK cells,
and stem cell-derived
NK cells

Genetical engineering
of NK cells to express
recombinant CARs

– Can be used
“off-the-shelf ”

– Very low risk of GvHD
– Intrinsic cytotoxicity
may prevent disease
escapedue to
downregulation ofCAR
target antigens.

– Long-term side effects
and cytokine release
syndrome are less likely
due to limited in vivo
persistence

– Questions regarding
the optimal NK
source, strategies for
recruitment, activation,
and costimulation need
further research

– Potential for commercial
use

– Preclinical and clinical
studies ongoing

NK cells: Natural Killer cells; CD: cluster of differentiation; IL: interleukin; GvL: graft versus leukemia; GvT: graft versus tumor; GvHD: graft versus host disease; EBV: Epstein-Barr virus;
AML: acute myeloid leukemia; HSCT: hematopoietic stem cell transplantation; CB: cord blood; BM: bone marrow; hESC: Human embryonic stem cells; iPSC: Induced pluripotent stem
cells; GMP: good manufacturing practice; KIR: Killer-cell immunoglobulin-like receptor; CAR: Chimeric antigen receptor.

2.1. KIRs and Other NK Cell Receptors

The activity of NK cells is regulated via inhibitory and activating
signals mediated through KIRs, which are classified as inhibitory
(iKIR) or activating (aKIR) [14–17]. NK-cell self-tolerance is
assured by an iKIR signal triggered via the recognition of a specific
KIR-ligand, which is a major histocompatibility complex (MHC)
class I molecule [18]. According to the “missing self ” (KIR-ligand
incompatibility or KIR epitope mismatch) hypothesis, NK-cell
alloreactivity is defined as the absence of a donor iKIR-ligand in the

recipient [6,19]. This alloreactivity has been shown to augment the
GvL effect and improve outcomes after haplo-HSCT [8,20]. How-
ever, further studies in other allogeneic HSCT settings, including
unrelatedmismatched, cord blood (CB), andmatched sibling trans-
plants yielded conflicting results [21–24]. Although NK cells are
known to exert little or no GvH effects, recent evidence suggests
that posttransplant residual recipient NK cell activity in the host
versus graft (HvG) direction may lead to graft destruction, and end
up with an increased relapse risk [25,26]. However, these observa-
tions strongly depend on the complex interaction of NK cells withPdf_Folio:135
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other immune effector cells, mainly T-cell subsets, which are vari-
ablymodified by graft type, conditioning regimen, and/or immuno-
suppression method.

The biology of aKIRs is more complex, and their signaling mech-
anisms and interactions with iKIRs are yet poorly understood
[27,28]. In addition to iKIR and KIR ligand mismatch-mediated
signals, NK cell activation also requires activatory signals from
various receptors including natural cytotoxicity receptors (NCRs),
DNAX accessory molecule-1 (DNAM-1), and NK group 2 mem-
ber D (NKG2D) [29,30]. The binding of NKG2D receptor on
the NK cell to the stress-induced ligands on tumor cells, such as
MHC class I chain-related gene A and B (MIC A/B) and UL16-
binding proteins (ULBP1-6) promotes an activating signal. The
recognition of CD112 (Nectin-2) and CD155 (PVR) by DNAM-
1 is another important activating pathway. The NCRs including
NKp30,NKp44, andNKp46 also provide activating signals via bind-
ing of yet undefined ligands. The signals received from NCRs,
NKG2D, andDNAM-1 trigger NK cell cytotoxicity and/or cytokine
production, whereas signals fromNKG2A suppress the stimulatory
pathway [31].

2.2. NK Cell Development

The development and the activity of NK cells are dynamically
modified by the interaction with their targets (i.e., malignant and
virus-infected cells) and other cells of the immune system. NK cell
education/licensing process via iKIRs is the most important step,
which promotes the maturation of functionally active NK cells and
inhibits those lacking appropriate iKIRs [12,18]. Dendritic cells,
monocytes, and macrophages contribute to NK cell development
by cytokines such as interferons, IL-12, IL-15, and IL-18. IL-2,
secreted by CD4+ T cells is also an essential cytokine for NK cell
survival and proliferation. In contrast, transforming growth factor-
β (TGF-β), secreted by regulatory T cells (Treg), suppresses NK
cell proliferation and activity [9]. In addition to aKIRs and iKIRs,
various activating signals are transmitted through C-type lectin
receptors, NCRs, killer cell C-type lectin-like receptor, Fcγ receptor
(CD16), signaling lymphocytic activation molecule (SLAM) fam-
ily receptors and other co-stimulatory molecules. Some inhibitory
signals are transmitted via programmed death-1 (PD-1), cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglob-
ulin and mucin domain containing-3 (TIM-3), and T cell
immunoreceptor with Ig and immunoreceptor tyrosine-based
inhibitory motif (ITIM) domains (TIGIT) [9]. Upon activation,
NK cells exert cytotoxicity via three distinct mechanisms: 1) direct
killing of the target cell by release of perforin and granzymes; 2)
induction of apoptosis through Fas-FasL or TNF‐related apopto-
sis‐inducing ligand (TRAIL)- dependentmechanisms; 3) activation
of other inflammatory cells by secretion of several cytokines and
chemokines [32]. NK cells may also differentiate into memory cells
lacking antigen specificity after in vitro incubation with cytokine
combinations and in response to some viral infections, including
human cytomegalovirus [9].

Current approaches of NK cell immunotherapy for hematological
malignancies involve using methods for in vivo potentiation of NK
cell proliferation and activity; adoptive transfer of NK cells from
autologous and allogeneic sources [CB mononuclear cells, periph-
eral blood (PB) mononuclear cells, CD34+ stem cells] and NK cell
lines; and genetic modification of NK cells.

3. IN VIVO POTENTIATION OF NK CELL
PROLIFERATION AND ACTIVITY

3.1. Haploidentical Hematopoietic Stem
Cell Transplantation

Haplo-HSCT should be considered as the first successful attempt of
NK cell immunotherapy. Since its success mostly relies on allore-
active NK cells, the first attempts aimed to increase in vivo NK cell
alloreactivity without increasing GvH effects. The simplest strategy
of selecting the best donor has been extensively studied and revealed
extensive data with a few consistent findings. Among iKIRs, the
mismatches between KIR2DL1, KIR2DL2/3, and KIR3DL1 and
their corresponding HLA ligand motifs C1, C2, and Bw4 should
be considered for haplo-HSCTs. For matched sibling and unrelated
HSCTs donors having aKIRs, especially KIR2DS1 and KIR2DS2
have been reported to yield favorable results [33–35]. Results of
studies are also in favor of donors with KIR group B haplotype,
which contains more than one aKIR gene, when compared to KIR
haplotype A [36–38].

The treatment with high-dose posttransplant cyclophosphamide
(PT-Cy) in the haplo-HSCT setting has enabled the use of
unmanipulated grafts without inducing GvHD [39]. The exact
mechanisms of NK cell alloreactivity and the progress of NK cell
recovery in this setting are thought to differ from NK cell alloreac-
tivitymodels developed in the T cell-depleted transplants. Thus, the
kinetics of immune reconstitution after PT-Cy have to be further
explained [40].

3.2. In vivo Effects of Cytokines

Several cytokines that take part in the development of NK cells
have been studied for boosting NK cell effects in vivo. IL-2 was
the first cytokine approved for this purpose [41]. The competi-
tive activation of nearly all T cells, including Treg and NK cells,
by IL-2, and the inhibitory effects of expanded Treg cells on NK
cells led to disappointing clinical results. The undesirable side
effect profile, especially at high doses, such as capillary leakage
and systemic inflammatory response limited its use [42]. However,
super-2, which is amodified form of IL-2 developed inmousemod-
els, has an increased affinity to IL-2Rβ and NK cell selectivity, with
an acceptable toxicity [43]. Human single-chain recombinant IL-15
also resulted in successful expansion of NK cells without activat-
ing Treg cells. However, cytokine release syndrome was prominent,
due to structural similarities with IL-2 [44]. IL-12, previously called
as “natural killer cell stimulatory factor” stimulates NK cells for
IFN-γ production and enhances cytotoxicity. However, toxicity-
related deaths observed in early trials limited its use [45]. Con-
sequently, several fusion proteins of recombinant IL-2, IL15, and
IL-12 are under investigation in order to get more selective NK
cell stimulation, better toxicity profile, and prolonged half-life [9].
Other cytokines, such as IL-7, IL-18, and IL-21 had positive results
in preclinical studies [32,41].

3.3. Effects of Specific Monoclonal
Antibodies and Immune Checkpoint
Inhibitors

Monoclonal antibodies directed towards certain targets may pro-
mote NK cell function. NK cell cytotoxicity may be stimulatedPdf_Folio:136
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via interactions with CD16. An Fc-optimized CD133 antibody has
been reported to increase NK cell degranulation without increase
in toxicity in a human acute myeloid leukemia (AML) xenograft
model [46]. Another problem has been resolved with a highly selec-
tive inhibitor of a disintegrin andmetalloproteinase‐17 (ADAM17),
which prevents the decrease in CD16 expression due to NK‐cell
activation via ADAM17-mediated removal of the CD16 recep-
tor [47]. The blockade of NK cell receptors, particularly immune
checkpoints, may eventually lead to immune stimulation. The
KIR-blocking antibodies IPH2101 and IPH2102 yielded promis-
ing results in preclinical studies. However, IPH2101 showed min-
imal response in a phase 2 clinical trial for multiple myeloma
(MM) treatment [48]. The ongoing preclinical studies target
immune checkpoints with the anti-natural killer group-2 member
A (anti-NKG2A) blocking antibody monalizumab and anti-TIM-3
blocking antibody MBG453 [49,50]. Although PD-1 antibodies,
including pidilizumab, lambrolizumab, and nivolumab mainly tar-
get T cells and provide tumor suppression, they also may boost
endogenous NK cell functions [51]. NK cell cytotoxicity can also
be enhanced and redirected to tumor cells via bi- or tri-specific
engagers [52–54]. These monoclonal antibodies may be combined
with other treatments, particularly NK-stimulating cytokines, in
order to produce synergistic effects. However, they require further
research into their safety and efficacy.

3.4. Effects of Immunomodulatory Drugs
and Others

Some immunomodulatory drugs, including thalidomide, lenalido-
mide, and pomalidomide may also promote NK-cell cytotoxicity
[55]. They are thought to act through activation of T and den-
dritic cells to release IL-2 and IFN-γ [56]. Proteasome inhibitors,
such as bortezomib and carfilzomib promote apoptosis by sensi-
tizing tumor cells to NK action via the upregulation of TRAILR
and natural killer group-2memberD (NKG2D) receptor ligands on
tumor cells [57]. Preclinical data have demonstrated similar modes
of action with doxorubicin and histone deacetylase inhibitors, such
as valproic acid and romidepsin [56].

4. ADOPTIVE TRANSFER OF NK CELLS

4.1. Autologous NK Cells

NK cells have been demonstrated to exert potent cytotoxicity
against various hematologic malignancies, especially AML, MM,
lymphoma, and many solid tumors as well [9,58]. High efficacy,
broad-spectrum, and low toxicity have made NK cells popular
for use in adoptive therapy. The initial trials included the use of
autologous NK cells. Due to the unacceptable toxicity and mini-
mal benefit obtained from the trials with in vivoNK stimulation via
high-dose IL-2 administration, ex vivo incubation of human PBNK
cells with cytokines appeared to be an alternative strategy. How-
ever, IL-2 incubated “lymphokine-activated killer” (LAK) cells also
failed to produce optimal results [59]. The limitations leading to
this failure were identified as the unintended proliferation of Treg
cells, eventually leading to NK cell suppression, and the inhibitory
effects of self-HLA molecules highly expressed on malignant
cells [42,60].

4.2. Allogeneic NK Cells

In order to eliminate these limitations, the use of allogeneic NK
cells have been tried. The first attempts in the non-HSCT setting
were made by Miller et al. in a group of solid tumors, Hodgkin
disease, and relapsed/refractory AML. Following a lymphodeplet-
ing conditioning regimen, patients were given haploidentical NK
cell infusions followed by exogenous IL-2. Among the three con-
ditioning regimens studied, the “Hi-Cy/Flu,” which included high-
dose cyclophosphamide (60 mg/kg for 1 or 2 doses) and fudarabine
(25 mg/m2 for 5 days), yielded the highest NK cell expansion in
vivo due to high endogenous IL-15 concentrations related to mas-
sive T-cell depletion. Their results were quite promising, with some
complete responders and no GvHD [61]. The use of a recombinant
IL-2 diphtheria fusion protein (IL2DT)within this scheme achieved
further Treg cell depletion and boosted NK cell proliferation [62].
As an alternative strategy, IL-15 was used for NK cell proliferation,
in order to overcome the undesired Treg cell expansion problems
observed with IL-2 [63]. Results are promising and, currently, many
IL‐15 products are under development. Using IL‐15 complexes is
another strategy, and preactivation with IL‐12, IL‐18 and IL‐15 has
been shown to differentiate NK cells into memory-like NK cells
with enhanced IFN-γ production and cytotoxicity [13,64]. Several
differentmodifications of cytokines are currently being investigated
for this purpose.

4.2.1. Sources of allogeneic NK cells

NK cells are frequently derived from PB. Following PB aphere-
sis from a normal donor, CD3 depletion is performed in order to
prevent GvHD. Sometimes, the product is also depleted of CD19,
aiming to prevent passenger lymphocyte syndrome and Epstein–
Barr virus (EBV) reactivation. In another attempt to increase purity,
CD3 depletion can be followed by CD56‐positive selection, which
has a risk of reducing the NK cell yield [61,65]. The final prod-
uct is either administered immediately, incubated with cytokines,
or undergoes ex vivo expansion. However, the latter is usually
required, since NK cells constitute only 5%–20% of PB mononu-
clear cells [35]. Autologous feeder cells and/or genetically modi-
fied allogeneic feeder cells are used in order to provide the survival,
proliferation, and activation signals required for NK cell expansion.
For this purpose, irradiated cell populations, such as PB mononu-
clear cells, T cells, EBV-transformed lymphoblastoid cells, andK562
cells, have been used [56]. Newly developed feeder-free protocols
have the potential to reach higher NK cell purity ratios. However,
they suffer from donor dependent variabilities in cell yield and
purity, which have to be improved [66]. Despite the existence of var-
ious protocols for selection and expansion of NK cells, only a few
of them are compliant with stringent good manufacturing practice
(GMP) requirements, which is a prerequisite for clinical use.

Despite depletion and selection processes, NK cells isolated from
PB constitute only 30%–50% of the cells in the end product
[67]. Besides PB, NK cells can also be obtained from CB, BM,
human embryonic stem cells (hESC), induced pluripotent stem
cells (iPSC), or NK cell lines. CB is an important NK cell source,
and the challenge of low number of NK cells in CB units and BM
harvests has been solved by using co-culturing systems with stro-
mal cell lines and cytokine combinations [35,68]. Another limita-
tion of CB-derived NK cells when compared to PB is their lower
activity, due to lower expression of inhibitory KIRs, which can bePdf_Folio:137
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partially overcome by ex vivo expansion [69]. Obtaining NK cells
from hESC or iPSC was recently described, and involves a much
more complex process [70]. However, it has the potential for pro-
ducing a homogenous NK cell product. A recently described GMP-
compatible iPSC source and industry‐friendly protocol may enable
to produce large‐scale quantities of universal NK cells without any
KIR expression [71].

4.2.2. Donor selection for allogeneic NK cells

Donor selection is also important for allogeneic NK cell ther-
apy. Donor evaluation involves KIR genotyping and identifica-
tion of KIR haplotype, KIR phenotyping, KIR allelotyping, and
typing of FcgR polymorphisms [72]. The principles used for
donor selection in haplo-HSCT are overall valid, with few excep-
tions. However, there is no clear-cut consensus, and the cri-
teria for donor selection have been evolving [9]. “Single-KIR”
NK cells harboring particular sets of inhibitory KIRs have been
developed and have been reported to be active against human
AML cells in vitro and in vivo [73]. Our institutional experi-
ence with autologous PB-derived and allogeneic CB NK cells
suggests a higher cytotoxicity of NK cells against human BM
myeloma plasma cells and cell lines in the presence of KIR2DS4
positivity [74].

4.3. NK Cell Infusions in the HSCT Setting

HSCT combined with NK cell infusions significantly improve
the treatment outcomes in hematopoietic malignancies, especially
AML, when compared to HSCT only [75,76]. However, the time of
infusion is very important. Superior clinical outcomes are obtained,
if infusion is performed before or within 2 weeks, as compared
to 4 weeks after HSCT [9,77]. However, the optimal timing,
frequency, and dose of NK cell infusion are yet not clear. NK cell
infusions are more effective against hematopoietic malignancies
than cytokine-induced killer cells, probably due to their increased
T cell contents [78].

4.4. NK Cell Lines

NK cell lines are derived from malignant cell clones and seven
establishedNK cells lines exist: NK-92, YT,NKL,HANK-1, KHYG-
1,NK-YS, andNKG[35]. Cell lines are easy to expand and appropri-
ate for use as an “off‐the‐shelf ” universal cell product, because they
contain a uniform and reproducible NK‐like population. Among
these, NK-92 is the only FDA-approved cell line for use in clinical
trials. It lacks expression of all KIRs (except KIR2DL4) and has been
shown to consistently exert high cytotoxicity in preclinical studies
[79]. The other cell lines are very similar to NK92 and reported to
have in vitro cytotoxicity. However, they have never been infused
into patients. In vivo persistence and the lack of CD16 expres-
sion are the major drawbacks of cell lines, and can be improved
by irradiation and transgene expression of CD16, respectively [80].
Although promising results have been achieved with NK92 cell
lines, the observed limited clinical efficacy brought about the idea of
genetic manipulation of these cell lines ex vivo in order to increase
their cytotoxic capacity.

5. NK CELL-BASED INNOVATIVE
CELLULAR THERAPIES AND FUTURE
PERSPECTIVES

Adoptive therapy with allogeneic NK cells has proven to be safe,
but only moderately efficient, due to problems with in vivo persis-
tence, restricted trafficking and homing to tumor sites, inhibitory
effects of tumor microenvironment, and lack of antigen speci-
ficity. These issues can be substantially solved by means of genetic
engineering. NK cell lines, PB-derived, and stem cell-derived NK
cells are frequently used for this purpose [81]. The problem of
decreased transduction efficiency due to the resistance of NK cells
to retroviral infection has been overcome with recent progress in
the technique [9]. Arming the NK-92 cell line with CD16a has been
reported to augment antibody-dependent cellular cytotoxicity [82].
Modifying NK cells to produce IL-15 and IL-2 can improve their
survival, persistence, proliferation, and function in vivo [83]. CARs
were developed to arm immune effector cells in order to recog-
nize tumor cells via surface antigens and enhance cytotoxicity in an
HLA-unrestricted fashion. The success of CAR-T cells has focused
research on the development of CAR-NK cells [81]. The intrinsic
characteristics of NK cells make CAR-NK more advantageous than
CAR-T cells. The risk of cytokine release syndrome is less likely,
due to their limited in vivo persistence. They offer the opportu-
nity to produce an off-the-shelf allogeneic product, as they do not
cause GvHD. Their intrinsic cytotoxic effects mediated through
their native receptors make disease escape due to downregulation
of the CAR target antigen less likely [58]. Initial preclinical stud-
ies targeting B cell malignancies with anti-CD19 and CD20 CAR-
NKs had promising results [84]. In addition, several CAR-modified
NK-92 cells against various hematologic malignancies have been
developed, such as CD19 and CD20 for B cell leukemia/lymphoma,
and CD138 and CS-1 for MM [85]. However, the results of clinical
studies are pending [86,87].

6. CONCLUSION

The understanding of NK cell immunobiology, together with
the development of ex vivo manipulation techniques and genetic
engineering have made it possible to develop NK cell-based
immunotherapies, which has the potential to maximize the cura-
tive capabilities of personalized cancer treatments. The products of
ongoing research not only diversify the present choices of therapy,
but also minimize therapy-related side effects and increase con-
venient and effective use. The future of NK cell immunotherapy
foresees personalized combination therapies.
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