An Efficient Protocol for Privately Determining the Relationship between Two Rectangles

Wenli Wang1, a, Xuhong Liu1, b

1School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China. awenliwang@snnu.edu.cn, bxuhong@snnu.edu.cn

Abstract. Secure multiparty computation (SMC) is a research focus in the international cryptographic community, while secure multiparty geometry computation is an important field of SMC. In this paper, we study an important secure computational geometric problem, that is, to privately determine the location relation between two rectangles. The existing protocols for this problem are of low efficiency. To efficiently solve this problem, we use sorting technique to design a protocol for privately determining the location relation between two rectangles. Finally, we analyze the theoretical efficiency to show that our protocol is efficient.

Keywords: Secure multi-party computation, computational geometry, the relation between two rectangles.

1. Introduction

In recent years, information leakage events occurred frequently, so it is imperative to protect information privacy in a distrust network environment. The privacy requirements make the secure multiparty computation (SMC) become a focus of the international cryptographic community.

SMC is a technology by which two or more participants can cooperatively perform some computations on their private data without disclosing the privacy of their private data. It was initially introduced by Yao [1] for two party cases and was thoroughly studied by Goldreich and Cramer et al. [2,3] extended SMC to multiple party cases. Privacy-preserving computational geometry is an important branch of SMC. Many geometric problems have been studied, such as the relation between line and hyperbola [4], the relation between line and planes [5], the relation between two planes [6], the relation between two straight lines [7], intersect between two convex polygons [8].

For the problem of privately determining the location relation between two rectangles, we only consider the cases in which the edges of rectangles are parallel to \(x \) axis or \(y \) axis. In order to describe clearly, we use \(A_1, A_2 \) to denote two rectangles. Luo [9] solved the polygons intersection problem based on protocol of two line segments intersection. Unfortunately, this protocol cannot solve the problems in the case that the rectangle \(A_1(A_2) \) is totally inside \(A_2(A_1) \). Then, to reduce the computation overhead and solve the problem in case that \(A_1 \) is totally in \(A_2 \) or vice versa, Li [10] studied and proposed a new protocol. In their approach, each party used the Cantor encoding to transform a rectangle into a set and then identify whether the intersection cardinality of two sets is zero based on the commutative encryption scheme. If the area of the rectangle is too large, then the set elements will increase, which may result in higher computational complexity.

In order to overcome the disadvantages of the schemes mentioned above, we reduce the problem of determining the relation between two rectangles to determining the relationship between two intervals. Our contributions are as follows.

1. We introduce a new coding method and use the ElGamal threshold encryption scheme to compute the order of the vertex.

2. We use the method of sorting for vertex and propose a protocol for determining the location relation between two rectangles. The protocol proposed is efficient and can also determine the location relation in case \(A_1(A_2) \) is totally inside \(A_2(A_1) \).
2. Preliminaries

2.1 Security Model.

Privacy by simulation paradigm: Suppose that \(f = (f_1, f_2) \) is a probabilistic polynomial-time function and \(\pi \) is a protocol that computes \(f \). Alice who holds \(x \), and Bob who holds \(y \), want to cooperatively compute \(f(x, y) = (f_1(x, y), f_2(x, y)) \) without disclosing the data \(x, y \).

In the process of \(\pi \), Alice, Bob get messages sequence \(\text{view}_i^{f_1}(x, y) = (x, r'_i, m'_1, \ldots, m'_l) \), \(\text{view}_i^{f_2}(x, y) = (y, r'_i, m'_i, \ldots, m'_l) \), respectively. Where \(r'_i(r^i) \) is the result of Alice’s (Bob’s) internal coin tosses and \(m'_i(m^i) \) is the \(i \)-th message that Alice (Bob) received.

Definition 1 (privacy w.r.t semi-honest behavior): For a deterministic function \(f, \pi \) privately computes \(f \) if there exist probabilistic polynomial-time algorithms, denoted as \(S_1, S_2 \) such that

\[
\{S_i(x, f_i(x, y))\}_{x, y} \neq \{\text{view}_i^{f_1}(x, y)\}_{x, y}, \quad (1)
\]

\[
\{S_i(y, f_i(x, y))\}_{x, y} \neq \{\text{view}_i^{f_2}(x, y)\}_{x, y}. \quad (2)
\]

Where \(= \) denotes computational indistinguishable, \(\text{view}_i^{f_1}(x, y) \) and \(\text{view}_i^{f_2}(x, y) \) are related random variables that are defined as functions of the same random execution.

In order to prove that a two-party computation protocol is secure, we must construct simulators \(S_1 \) and \(S_2 \) such that (1) and (2) holds.

2.2 The Threshold Encryption Scheme.

The threshold encryption scheme is an important tool in secure multiparty computation to against collusion attacks. Let \(n \) be the number of parties, if at least \(t \) party can decrypt ciphertext effectively, and less than \(t \) party cannot get useful information, such a system is called a \((t, n)\)-threshold cryptosystem. In this paper, we use \((2,2)\)-threshold trivial cryptosystem. In the following, we construct the threshold encryption scheme by using ElGamal encryption system:

KeyGen: On input a security parameter \(k \), the KeyGen algorithm generates a large prime \(p \) and a generator \(g \). Each participant \(P (1 \leq i \leq n) \) randomly chooses a number \(k_i \) as a private key share and computes \(h_i = g^{k_i} \mod p \). The public key is

\[
h = \prod_{i=1}^{n} g^{k_i} \mod p = g^\sum_{i=1}^{n} k_i \mod p.
\]

Encrypt: Taking \(M \) and \(h \) as inputs and selecting a random number \(r \), computes

\[
E(M) = (c_1, c_2) = (g^r \mod p, Mh^r \mod p).
\]

Decrypt: This algorithm takes \(E(M) = (c_1, c_2) \) as input and computes

\[
M = \frac{c_1}{\prod_{i=1}^{n} \hat{c}_i} \mod p.
\]

3. Determining the Location Relation between Two Rectangles

The problem of privately determining the location relation between two rectangles can be described as follows. Alice has \(A_1 = I_1 \times J_1, \) \(I_1 = [x_1, x_2], J_1 = [y_1, y_2] \), and Bob has \(A_2 = I_2 \times J_2, \) \(I_2 = [x_3, x_4], J_2 = [y_3, y_4] \). They want to know the location relation between their rectangles \(A_1 \) and \(A_2 \) without disclosing the information of rectangles. For simplicity, we only consider that the edges of rectangle are of non-coincidence.

According to the character of rectangle, it is not hard to obtain the following facts:

1. If \(I_1 \) intersects \(I_2 \) and \(J_1 \) intersects \(J_2 \), then, \(A_1 \) intersects \(A_2 \).
2. If neither \(I_1 \) intersects \(I_2 \), nor \(J_1 \) intersects \(J_2 \), then, \(A_1 \) separates \(A_2 \).
If we get the orders \((x_i)_{ord}, (y_j)_{ord}\) of \(x_i, y_j\), we can further easily determine the location relation from the order value. If \(I_1\) intersects \(I_2\), \((x_i)_{ord}, (x_i)_{ord}\), \((x_i)_{ord}, (x_i)_{ord}\) at least one group is non-adjacent. For example, \((x_i)_{ord} = 1, (x_i)_{ord} = 3, (x_i)_{ord} = 2, (x_i)_{ord} = 4, then \(\sum_{i=1}^{4} (x_i)_{ord} - \sum_{i=1}^{4} (x_i)_{ord} = 4. \) If \(I_1\) separates \(I_2\), both of them are adjacent, for example, \((x_i)_{ord} = 1, (x_i)_{ord} = 2, (x_i)_{ord} = 3, (x_i)_{ord} = 4, then \(\sum_{i=1}^{4} (x_i)_{ord} - \sum_{i=1}^{4} (x_i)_{ord} = 2. \) Similarly, we will get \(\sum_{j=1}^{4} (y_j)_{ord} - \sum_{j=1}^{4} (y_j)_{ord} = 4, if \(I_1\) intersects \(I_2\); otherwise, \(\sum_{j=1}^{4} (y_j)_{ord} - \sum_{j=1}^{4} (y_j)_{ord} = 2. \) Therefore, we can determine the location relation between two rectangles according to the value of \(\sum_{i,j=1}^{4} (x_i)_{ord} + (y_j)_{ord} - \sum_{i,j=1}^{4} (x_i)_{ord} + (y_j)_{ord}. \)

Before compute the order of \(x_i, y_j\), we first introduce a building block: 1-r Encoding, which is used to encode a set to a 1-r vector. The principle for encoding a set \((x_i, x_j)\) to a 1-r vector \(\hat{X}_1 = (\hat{x}_{11}, \hat{x}_{12}, \ldots, \hat{x}_{1n})\) is as follows: if \(x_i \in X(a \in [1, n])\) then \(\hat{x}_a = r\); otherwise, \(\hat{x}_a = 1\). Similarly, Bob encode his set \((x_i, x_j)\) to \(\hat{X}_2 = (\hat{x}_{21}, \hat{x}_{22}, \ldots, \hat{x}_{2n})\). Similarly, they can encode \((y_1, y_2)\) \((y_3, y_4)\) as \(\hat{Y}_1 = (\hat{y}_{11}, \hat{y}_{12}, \ldots, \hat{y}_{1n})\), \(\hat{Y}_2 = (\hat{y}_{21}, \hat{y}_{22}, \ldots, \hat{y}_{2n})\).

Then, they represent the vector \(\hat{X}_1, \hat{X}_2\) and \(\hat{Y}_1, \hat{Y}_2\) by the following matrix \(X\) and \(Y\). Where

\[
X = \begin{bmatrix} \hat{X}_1 \\ \hat{X}_2 \end{bmatrix} = \begin{bmatrix} \hat{x}_{11} & \cdots & \hat{x}_{1n} \\ \hat{x}_{21} & \cdots & \hat{x}_{2n} \end{bmatrix}, \quad Y = \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \end{bmatrix} = \begin{bmatrix} \hat{y}_{11} & \cdots & \hat{y}_{1n} \\ \hat{y}_{21} & \cdots & \hat{y}_{2n} \end{bmatrix}.
\]

Here, we assume that \(x_i = u_a (a \leq n)\) is true. To compute the order of \(x_i\), they compute the product \(h_i\) of the elements in the former \(a_i\) columns of the matrix \(X\). Due to the particularity of elements, \(h_i\) can be represented as \(h_i = r^{x_i}\), that is the exponentiation \(d_{x_i}\) is the order of \(x_i\). Similarly, they can compute the product \(g_{y_j}\) of the elements of the matrix \(Y\) to obtain the order \(d_{y_j}\) of \(y_j\).

Theorem 1. According to the above calculation, Alice and Bob can correctly compute the order of \(x_i, y_j\).

Proof. For \(x_i = u_a (a \leq n)\), in order to compute its order, they compute the product of the elements in the former \(a_i\) columns of the matrix \(X\). According to the above encoding, only the position of \(x_i\) and data smaller than \(x_i\) in the former \(a_i\) columns are encoded as \(r\), and the rest are encoded as \(1\). Therefore, the exponentiation \(d_{x_i}\) indicates how many elements are smaller than \(x_i\), that is, the order of \(x_i\). Similarly, they also can correctly compute the order \(d_{y_j}\) of \(y_j\).

In order not to disclose additional information, the value of \((x_i)_{ord}, (y_j)_{ord}(1 \leq i, j \leq 4)\) should be private. In other words, we just compute the final result \(\sum_{i,j=1}^{4} (x_i)_{ord} + (y_j)_{ord} - \sum_{i,j=1}^{4} (x_i)_{ord} + (y_j)_{ord} \) to privately compute the relationship between two rectangles. In order to describe clearly, we define

\[
P(A_1, A_2) = \begin{cases} 1, & \text{if rectangle } A_1 \text{ intersect } A_2; \\ 0, & \text{if rectangle } A_1 \text{ separate } A_2. \end{cases}
\]

Protocol 1: A protocol for determining the location relation between two rectangles

Input: Alice inputs rectangle \(A_1 = I_1 \times J_1\), Bob inputs rectangle \(A_2 = I_2 \times J_2\).

Output: \(P(A_1, A_2)\).

1. Alice and Bob select the public parameter \(g, p\) for the ElGamal threshold encryption schemes. Then, they randomly choose number \(k_i, k_j\) as a private key share and compute \(h_i = g^{k_i} \mod p (i = 1, 2)\). The public key is

\[
h = h_1 h_2 = g^{k_1} g^{k_2} \mod p = g^{k_1+k_2} \mod p.
\]

2. Alice encodes her set \((x_i, x_j)\) \((y_1, y_2)\) as \(\hat{X}_1 = (\hat{x}_{11}, \hat{x}_{12}, \ldots, \hat{x}_{1n})\) and \(\hat{Y}_1 = (\hat{y}_{11}, \hat{y}_{12}, \ldots, \hat{y}_{1n})\), then encrypts \(\hat{X}_1, \hat{Y}_1\) as \(E(\hat{X}_1) = (E(\hat{x}_{11}), \ldots, E(\hat{x}_{1n}))\), \(E(\hat{Y}_1) = (E(\hat{y}_{11}), \ldots, E(\hat{y}_{1n}))\).
3. Similarly, Bob encodes \(\{x_1, x_2, y_1, y_2\} \) as \(\hat{X}_2 = (\hat{x}_2, \ldots, \hat{x}_{2n}) \) \(\hat{Y}_2 = (\hat{y}_2, \hat{y}_{22}, \ldots, \hat{y}_{2n}) \), and then encrypts \(\hat{X}_2, \hat{Y}_2 \) as \(E(\hat{X}_2) = E(\hat{x}_2) \ldots E(\hat{x}_{2n}) \), \(E(\hat{Y}_2) = E(\hat{y}_2) \ldots E(\hat{y}_{2n}) \).

4. Alice and Bob publishes \(E(\hat{X}_1), E(\hat{Y}_1) \) and \(E(\hat{X}_2), E(\hat{Y}_2) \), respectively. So, all parties get the matrix \(E(X), E(Y) \).

5. According to her data, Alice executes the following:
 (a) According to the value of \(x_1, x_2, y_1, y_2 \), Alice computes the product \(H_1 = E(h_1), H_2 = E(h_2) \) and \(G_i = E(g_i)_r, G_i = E(g_i)_s \) of the elements in the matrix \(E(X) \) and \(E(Y) \). Then, further computes \(a_{i1} = H_2 H_1^{-1} G_i g_i^{-1} \), where \(H_i^{-1} (G_i^{-1}) \) is the multiplicative inverse of \(H_i (G_i) \).
 (b) Chooses a random number \(r_1 \) to compute \(a_{21} = (g^{r_1} \mod p, h^{r_1} \mod p) \).
 (c) Sends \(a_i = a_{i1} a_{i2} \) to Bob.

6. Similarly, Bob executes the following:
 (a) According to the value of \(x_1, x_2, y_1, y_2 \), Bob computes the product \(H_1 = E(h_1), H_2 = E(h_2) \) and \(G_i = E(g_i)_r, G_i = E(g_i)_s \) of the elements in the matrix \(E(X) \) and \(E(Y) \). Then, further computes \(a_{j1} = H_j H_j^{-1} G_i g_i^{-1} \), where \(H_j^{-1} (G_j^{-1}) \) is the multiplicative inverse of \(H_j (G_j) \).
 (b) Chooses a random number \(r_2 \) to compute \(a_{22} = (g^{r_2} \mod p, h^{r_2} \mod p) \).
 (c) Computes \(c = a_i a_i = a_{i1} a_{i2} = (c_1, c_2) \) and then sends \((c_1, c_2) \) to Alice.

7. Alice computes \(c_i^1 \) and \(c_ii^1 = \frac{c_1}{c_2} = r^d \). If \(d = 8 \), outputs \(P(A_1, A_2) = 1 \); otherwise, outputs \(P(A_1, A_2) = 0 \).

3.1 Correctness and Security.

According to the calculation principle, we can correctly determine the relation from the value \(\sum_{i,j=1}^{2} ((x_i)_{mod} + (y_j)_{mod}) - \sum_{i,j=1}^{2} ((x_i)_{mod} + (y_j)_{mod}) \). In addition, we can correctly calculate the order of \(x_i, y_i \) by calculating \(H_1 G_1 \) according to Theorem 1. Hence, Protocol 1 can correctly determine the location relation between two rectangles.

Theorem 2: Protocol 1 can securely determine the location relation between two rectangles.

Proof. The security of Protocol 1 is based on the security of threshold decryption algorithm. Each party only publishes the encrypted information \(E(\hat{X}_1), E(\hat{Y}_1) \) and \(E(\hat{X}_2), E(\hat{Y}_2) \) in the calculation process. According to the probabilistic threshold encryption algorithm is semantically secure, without the cooperation of all participants, any message encrypted with the public key is computationally indistinguishable. Therefore, the view obtained when the protocol is actually executed is computationally indistinguishable with the sequence of information obtained by simulate with inputs \(\{x_1, x_2, y_1, y_2\} \) or \(\{x_1, x_2, y_1, y_2\} \) that keep \(P(A_1, A_2) \) unchanged. Thus,

\[
\{S_1(A_1, f_1(A_1, A_2))\}_{A_1} = \{\text{view}_{\hat{X}_1}(A_1, A_2)\}_{A_1, A_2};
\]

\[
\{S_2(A_2, f_2(A_2, A_1))\}_{A_1} = \{\text{view}_{\hat{Y}_2}(A_1, A_2)\}_{A_1, A_2};
\]

4. Efficiency Analysis

Computational complexity: in this section, we only compare our protocols with Li’s scheme. For computational complexity, we only consider the most expensive modular exponentiation.

Li’s scheme transforms the rectangle \(A(A_k) \) into a set \(T(A_k)(T(A_k)) \) by Cantor encoding. The execution of Li’s protocol needs to invoke the protocol for millionaire. Therefore, the modular exponentiation was increasing and the protocol totally needs at least 1000 modular exponentiations. Our Protocol 1, both Alice and Bob needs \(2n + 1 \) \((U = n(n > 8)) \) encryptions and 1 decryptions. For ElGamal encryption schemes, each encryption takes 2 modular multiplications and each decryption takes 1 modular multiplication. When the number of elements \(n \) of \(U \) is 30, our protocols only need 246 modular multiplications.
Communication Complexity: Communication complexity, i.e. communication rounds, is an important factor for evaluating secure multiparty computation solutions. Li’s scheme needs 6 rounds, while our protocol requires 2 rounds. Table 1 summarizes the comparison.

Table 1 Comparison of the Computational and Communication Complexity

<table>
<thead>
<tr>
<th>Numble</th>
<th>Li’s scheme</th>
<th>Protocol 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational</td>
<td>1000</td>
<td>246</td>
</tr>
<tr>
<td>Communication</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Through the above analysis, the theoretical efficiency indicated that our protocol 1 is efficient.

5. Conclusion

In this paper, we use sorting technique to design an efficient protocol for privately determining the location relation between two rectangles. In future research, we will study the problem of the relationship between two rectangles in the malicious model and other secure multiparty geometry problems.

References

