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Abstract�² A Bézier curve is a parametric curve frequently 

used in computer graphics and related fields. In this paper, 

we firstly discusse the geometric and sudivision properties of 

the complex quadratic Bézier curve the on unit circle. Then,  

We discusse the relationship between the complex quadratic 

Bézier curve and Pascal spiral curves. Finally, we present 

the geometric continuity condition of composite curve. 

 

Keywords - Bézier curve; Pascal spiral curve; geometric 
continuity  

I.  INTRODUCTION 

Bézier curves are widely used in computer graphics to 

model smooth curves. As the curve is completely 

contained in the convex hull of its control points, the 

points can be graphically displayed and used to 

manipulate the curve intuitively. Affine transformations 

such as translation and rotation can be applied on the 

curve by applying the respective transform on the control 

points of the curve. 

Quadratic and cubic Bézier curves are most common. 

Higher degree curves are more computationally 

expensive to evaluate. When more complex shapes are 

needed, low order Bézier curves are patched together, 

producing a Bézier spline. A Bézier spline is commonly 

referred to as a "path" in vector graphics standards (like 

SVG) and vector graphics programs (like Adobe 

Illustrator, CorelDraw and Inkscape). To guarantee 

smoothness, the control point at which two curves meet 

must be on the line between the two control points on 

either side. 

The simplest method for scan converting (rasterizing) a 

Bézier curve is to evaluate it at many closely spaced 

points and scan convert the approximating sequence of 

line segments. However, this does not guarantee that the 

rasterized output looks sufficiently smooth, because the 

points may be spaced too far apart. Conversely it may 

generate too many points in areas where the curve is 

close to linear. A common adaptive method is recursive 

subdivision, in which a curve's control points are checked 

to see if the curve approximates a line segment to within 

a small tolerance. If not, the curve is subdivided 

parametrically into two segments, 0 ≤ t ≤ 0.5 and 0.5 

≤ t ≤ 1, and the same procedure is applied recursively 

to each half. There are also forward differencing methods, 

but great care must be taken to analyse error propagation. 

Analytical methods where a spline is intersected with 

each scan line involve finding roots of cubic polynomials 

(for cubic splines) and dealing with multiple roots, so 

they are not often used in practice. 

In animation applications, such as Adobe Flash and 

Synfig, Bézier curves are used to outline, for example, 

movement. Users outline the wanted path in Bézier 

curves, and the application creates the needed frames for 

the object to move along the path. For 3D animation 

Bézier curves are often used to define 3D paths as well as 

2D curves for keyframe interpolation. 

A Bézier curve is defined by a set of control points P0 

through Pn, where n is called its order (n = 1 for linear, 2 

for quadratic, etc.). The first and last control points are 

always the end points of the curve; however, the 

intermediate control points (if any) generally do not lie on 

the curve. 

Given points P0 and P1, a linear Bézier curve is simply 

a straight line between those two points. The curve is 

given by 
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and is equivalent to linear interpolation. 

A quadratic Bézier curve is the path traced by the 

function B(t), given points P0, P1, and P2, 
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which can be interpreted as the linear interpolant of 

corresponding points on the linear Bézier curves from P0 

to P1 and from P1 to P2 respectively. Rearranging the 

preceding equation yields: 
2 2

1 2( ) (1 ) (1 ) , [0,1]B t t t t p t p t      . 

     The derivative of the Bézier curve with respect to t is 

1 0 2 1( ) 2(1 )( ) 2 ( ), [0,1]B t t p p t p p t        

from which it can be concluded that the tangents to the 

curve at P0 and P2 intersect at P1. As t increases from 0 to 

1, the curve departs from P0 in the direction of P1, then 

bends to arrive at P2 from the direction of P1. 

The second derivative of the Bézier curve with respect 

to t is 

2 1 0( ) 2( 2 )B t p p p    . 
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A quadratic Bézier curve is also a parabolic segment. 

As a parabola is a conic section, some sources refer to 

quadratic Béziers as conic arcs. 

In this paper, we will discusse the geometric and 

sudivision properties of the complex quadratic Bézier 

curve on unit circle. Simultaneously  We will discusse the 

relationship between the complex quadratic Bézier curve 

and Pascal spiral curves. Finally, the geometric continuity 

condition of composite curve will presented in the end. 

II. COMPLEX QUADRATIC BÉZIER CURVE 

A.  Definition 

Definition 2.1 Given three points b0, b1, and b2, which 

are on the complex plane C. The complex quadratic 

Bézier curve on the unit circle can be defined as 
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where z=z(t) is an unit circle (inferior) arc: 

1
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and 0 0 1 1( ), ( )z z z z   , suppose that the 

counterclockwise central angle is positive direction. 
     We can get that 

W( 0 )=b 0 ,W( 1 )=b 1； 

W  ( 0 )=(sin( 2/ )) 1 e 2/i (b 1 -b 0 ), 

and 

W  ( 1 )=(sin( 2/ )) 1 e 2/i (b 2 -b 1 )。 

B. Geometric properties 

In order to analyze the singular inflection and 

convexity of the complex quadratic Bézier curve on the 

unit circle, we firstly analysis the properties of the 

general complex quadratic curves on unit circle. 

,
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     Regar t as the variable parameter of curve (4), then we 

can get the following theorem. 

Theorem 2.1  Geometric properties of the unit circle 

on the complex two times curve is determined by the 

point locations in the complex plane (Figure 1). 

(1) when N , it has no singularities and inflection 

points, it is a convex curve; 

(2) when S , it has one and only one inflection 

point, and it has no singularity; 

(3) when D , it has and only two inflection points, 

and it has no singularity; 

(4) when C , it has one and only one cuspidal  

point, no focal  points and inflection point; 

(5) when L , it has two and only two key points, 

it has no inflection points and cuspidal points. 

Figure 1 

where the two disks of the region S are composed of 

arc 1S , 1N  and 2S , 2N  surrounded by, contain 1S and 

2S  but does not contain 1N  and 2N .Regional D 

surrounded by arc 1S , 3N ,  C and 2S ,but out of its own. 

Regional L surrounded b arc C, 1L  and 2L , contain 1L  

and 2L  but not contain C. Regional N was about 

complex plane S, D, L and C complementary set. The 

curve of the following expression here: 

   C： = ite ， 10   t ，                 

  1S ： =3/2 0z +1/2 ite ，          

00   t  ， 

  2S ： =3/2 1z +1/2 ite ，   

11 2   t ，                     

  1N ： =3/2 0z +1/2 ite ，

00 2   t ， 

   2N ： =3/2 1z +1/2 ite ，

11   t ，                         

  3N ： =2 ite ， 10   t ，           
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 1L  ： =1/2 0z +1/2 ite ， 10   t ，      

2L ： =1/2 1z +1/2 ite ， 10   t 。                            

For complex two Bezier curve, we can get 

  =[ 1z 0b -   20110 bzbzz  ]/[ 210 2 bbb  ]                          

and 

    ][ 20011 bzbzb   /

   ][ 01   zz                   

Theorem 2.2  The unit circle (inferior) arc on the 

complex two Bezier  11 btW ；  geometric properties of 

curves is determined by the following location in the 

complex plane.  When and only when 

the LbandCbDbSbNb  1111 ,,, , curve 

 11 btW ；  in order to convex curve, there is an 

inflection point, two point, with a sharp point and a two 

point(Figure 2). The expression of each curve is: 

 

Figure 2 
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3 3 3 1 2 2 1 1: ,arg( ) arg( );it

c c c cN v a a p e a p t a p        

/ 2

1 0 2 0: ( ), 0;iL v b ue b b u     

       
/ 2

2 2 2 0: ( ), 0;iL v b ue b b u                                       

Ⅲ RELATIONSHIP BETWEEN THE COMPLEX QUADRATIC 

BÉZIER CURVE AND PASCAL SPIRAL CURVES 

Now, we discuss the relationship between the 

complex quadratic Bezier curve and Pascal spiral 

curves. 

Theorem 3.1   Complex t quadratic Bezier curve in 

general: 

 t = 0d + zd1 +
2

1 2

2 zd ,  z(t) 1 ：

z(t)= e
it

, 10   t ,0< =   01  

When and only when the 

2 2 2 2

2 2 1 1(Re( )) (Im( )) (Re( )) (Im( ))d d d d   , 

( )t  and Pascal equivalence. When and only when 

the 2d =0, ( )t , arc and conical curve 

equivalence. ( )t and parabola was not equivalent. 

Proof: For  t = 0d + zd1 +
2

1 2

2 zd , 

set , ( 0,1,2), cos sinj j jd a ib j z t i t     , the 

( )t  parameter equation of the form, That is: 

 
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0 1 1 2 2

0 1 1 2 2

1
cos sin cos 2 sin 2

2

1
sin cos cos 2 sin 2

2

x a a t b t a t b t

y b a t b t b t a t


    


     


 

The parameter equation for Pascal spiral C(t). 

( cos )cos

( cos )sin

p

p

x a t b t

y a t b t

 


 

                               （5） 

For ( )t : 

0

0

ˆ

ˆ

x x a

y y b

 

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                                                    （6） 

Therefore, when and only when 

the
2 2 2 2

2 2 1 1(Re( )) (Im( )) (Re( )) (Im( ))d d d d   , 

The affine transformation between (5) and (6). 
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So, ( )t  and C(t) equivalent. 

The rest of the proposition can be proved similarly. 

Theorem 3.2   Complex quadratic Bezier r curve.  

W  t =

2

01

1
















zz

zz
b 0 +2 















01

1

zz

zz















01

0

zz

zz
b 1 +

2

01

0
















zz

zz
b 2  

The z=z (T) is the unit circle (inferior) arc 

1  ：z(t)= e
it

, 10   t ,0< =   01 , 

When and only when the: 
2 2

2 1 0 2 1 0

2 2

0 2 1 0 1 1 0 0 2 1 0 1 1 0

(Re( 2 )) (Im( 2 ))

(Re( ( ) )) (Im( ( ) ))

b b b b b b

z b z z b z b z b z z b z b

    

       

 W(t)  equivalent of Pascal spiral; 

When and only when: 2 1 02b b b  =0, W(t) and 

circular arc and conical curve equivalence. ( )t  cannot 

and parabolic equivalence. 

Prove: General two degree complex curves 

and complex two Bezier curves have the 

following relationship. 
2 2

0 0 1 1 0 1 0 2

1 1 0 1 0 1 0 2

2 0 1 2

2

2( ( ) )

2( 2 )

d b z z z b z b

d z b z z b z b

d b b b

   


    
   

 

We can prove the above proposition by theorem 3.1 

and the above formula. 

ⅣCONCLUSION 

With the above discussion, we can get that complex 

quadratic Bezier curves have limitations of relatively 

large, first of all, even the point of arc (with respect to the 

free parameter curves are not general representation of 

arc, has certain superiority),complex two Bezier curves 

for only the two time in from, essentially is a. In other 

words, if only to arc needs, using the properties of 

fractional linear mapping on complex field (the circular), 

when the variable is located on the circumference at, a 

line mapping that can express the circle arc, the point by 

proposition 3 can also see. Furthermore, due to complex 

two Bezier curve without segmentation of good property 

(mainly because of the complex two Bezier curve has no 

affine invariance), the practical application of partition 

property often need to use, should be said that good 

segmentation properties is carried out curve design must 

consider the question, so, in this respect, complex the two 

Bezier curves are also has great limitations.                                    
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