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Abstract 
In this paper, a design procedure of support vector 
machine (SVM) based model identification and 
control strategy for stable nonlinear discrete-time 
process with input-output form is proposed. In order to 
implement the control structure, the both inverse and 
straight model representation and identification 
methods are addressed in detail. The control of a 
simulated continuous-stirred tank reactor (CSTR) 
process illustrates the proposed design procedure and 
the properties of the SVM based model identification, 
direct inverse model control and internal model 
control for nonlinear systems. 
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1. Introduction 
In nonlinear control literature, several techniques have 
been developed to control nonlinear plants subject to 
uncertainties and disturbances: among them, nonlinear 
internal model control (NIMC) method has played a 
significant role due to its properties in good robustness 
against disturbances and model mismatch [1]-[2]. The 
basic idea of nonlinear internal model control is 
illustrated in Fig.1. It consists of the controller and a 
predictive model of the process, i.e., the internal 
model .The internal model loop uses the difference 
between the outputs of the process and of the internal 
model, which represents the effect of disturbances and 
model mismatch. In the past years, IMC has been 
extensively studied in the case of a linear modeling of 
the process with good robustness properties against 
disturbance and mode mismatch. But in the most 
applications of industrial process control such as 
chemical and power plant, it is difficult in modeling 
such complex and nonlinear plant using traditional 
methods. Developments of NIMC have been proposed 

for continuous-time systems [3]-[4] and for discrete-
time systems [5] using neural network and fuzzy 
theory. Generally, these methods have at least one of 
the following restrictive conditions: ① the sample 
time should be long enough to allow an iterative 
search for the controller output; ② the generalization 
ability is poor when using neural network because 
neural network is constructed on experience risk 
minimization principle; ③ the objective maybe has a 
local minimum and training speed is slow in the case 
of using neural network; ④ modeling needs more 
prior knowledge and relies much more on experts in 
the case of using fuzzy theory. This paper develops a 
SVM based NIMC method which is free of all these 
limitations.  
 

 
Fig.1: Internal model control system. 

 
Recently a new kind of learning machine called 

support vector machine (SVM) [6]-[7] was presented 
and has been used for classification, function 
regression, and time series prediction, etc [6]-[8].  
SVM, with simple topological structure and good 
generalization capability, is a great achievement in 
machine learning area in recent years. Its basic idea is 
to map input data into a high dimensional feature 
space via a nonlinear mapping technique (kernel dot 
product trick), and to carry out linear classification or 
regression in the feature space. SVM solutions who 
are global optimal and unique are characterized by 
convex quadratic optimization problems, which are 



typically solved in dual space. SVM has excellent 
capability in generalization because it is constructed 
on structure risk minimization principle. Because 
SVM can approximate nonlinear functions with 
arbitrary precision [6], now some researcher has 
studied the application of SVM in nonlinear system 
identification and control [9]-[10]. 

In [11], a simple SVM internal model with RBF 
kernel function was built to control the greenhouse 
environment problem. And in our earlier work [12], a 
SVM based inverse model for nonlinear system 
identification and control was studied. All these are 
initial work. In this paper, we detail the SVM based 
model identification and internal model control for 
nonlinear system. Like neural network, the first stage 
for the SVM based identification and control of an 
unknown dynamic system is the development of an 
accurate model of the plant under consideration. 
Obtaining such a model involves a training phase 
where the SVM is presented with a set of previously 
collected input-output data of the system. In this case, 
the training phase can be accomplished only off-line 
by connecting the SVM model in an open-loop 
configuration with the unknown plant which is excited 
with a set of selected inputs in order to measure the 
corresponding outputs. Unlike neural network’s 
gradient based iterative method under experience risk 
minimization principle, SVM uses kernel dot product 
trick and convex quadratic optimization abiding by 
structure risk minimization principle, which 
guarantees that the solutions can be obtained by once-
through operation and are global optima. So if the 
inversion of unknown dynamic system exists, the 
SVM can obtain the inverse model and straight model 
of the system easily, quickly and accurate using the 
same set of input-output data. Though standard SVM 
can only build off-line model (non-adaptive training), 
it performs much more outstandingly at dealing with 
nonlinear time-invariable system than neural network 
does.   

We propose here a general design procedure of 
SVM internal model identification and control 
systems. We first introduce the SVM identification of 
internal model and inverse model. The time delay will 
be taken into account, and we will find that the time 
delay dose not increase the difficulty of modeling, 
which is of importance for the identification. Then, we 
study the SVM based control including the direct 
inverse control and internal model control. And last, 
we will use a CSTR example to illustrate the SVM 
based identification and control performance. The 
advantages of SVM are exploited through the paper, 
in particular, the ability of SVM for nonlinear black-
box inverse and straight modeling.  

2. SVM based nonlinear modeling  
In this paper, a stable single input-single output 
process is investigated. We consider the process to be 
described by the following discrete-time deterministic 
nonlinear input-output model [2]: 
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)}1(,),({ +−−− mdkudku L ; ],2,1,0[ L∈d  is the 

time delay; h  is an unknown nonlinear function; py  
is the output, the effect of disturbance being modeled 
by p . Here, provided that 0=p , and in the simulation, 
the effect of disturbance will be considered. 

Efficient black-box modeling needs the training 
sequences are of sufficient size and distribution. Under 
the assumption that the system is zero initial, we use a 
random series of tu  (size is tN , i.e., )(),...1( ttt Nuu ) 
full of the input domain to generate the series of 
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. Note that, we measure the output at the same time 
when tu  is added to the system, and because the 
system has time delay and is auto regression, pty  has 
a longer series. And the SVM based true model at 
sample instant time k is of the form: 
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where φ  is the nonlinear function implemented by a 
feed-forward SVM, k

nkpy 1{ +−  and dk
mdkiu −
+−− 1{  are the 

known system output and input sequences respectively 
at time k . ]',[ 1),max(1 ++−+= mdndNt

aa La  and b are 
the coefficients of SVM after learning. In order to 
simplify the writing, a  covers all training points’ 
coefficients including non support vectors’, which 
values will be zero or in a very small neighborhood of 
zero. K  is the kernel function. C is the penalty factor 
and ε  is the accuracy of Vapnik’s loss function (see 
detail in [6]). Thus, provided that n , m  and d  are 
known, we can use 
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based straight model (i.e. internal model). Also, the 
SVM based inverse model can be trained by 
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niptt uydiu directly. But 
unfortunately, in most cases, systems’ structure 
information is unknown. So in this paper, we assume 
that n , m  and d  are unknown. 

2.1. Straight model 



In black-box identification, how to truncate the 
regression series pty  and tu  is important. Here we 
use 'n and 'm denote the truncation of pty and tu  
respectively. Obviously, dm >' should be guaranteed. 
Too large 'n and 'm  will increase the training 
computation, and too small 'n and 'm  will be 
insufficient to make the SVM to meet the nonlinear 
characteristic. We can use simulation test in 
generalization ability to choose 'n and 'm . 

Once 'n and 'm  are selected, the SVM based 
straight model will be represented as follow: 
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where 1φ  is another nonlinear function implemented 
by a feed-forward SVM. And 
here ]',[ 1)','max(1 +−= mnNt

aa La . Because the time 
delay d  is unknown, we use i

mitu 1'{ +− before the time 
instant of 1+i to train the straight model. As we can 
see, that the time delay will not increase the 
computation in SVM based modeling.  

2.2. Inverse model 
In order to deal with the unknown time delay, we will 
adopt more regression factors of pty  before the time 
instant i in SVM training, which will sufficiently take 
the time delay into account. So the SVM based inverse 
model will be represented as follow: 
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where 2φ  is another nonlinear function implemented 
by a feed-forward SVM. Because the future sequence 
of lk

ky +{ is unknown, we use he tracking set point 
sequence lk

kr +{  in (4) to predict the current control 
input. In this case, ]',[ 1)'',''max(1 +−= mnNt

aa La , 
''n and ''m are the truncation number of past pty and 
tu  respectively. And 1+≥ dl must be guaranteed. 

3. SVM based control 
In this paper, the problem of tracking a sequence 

)}({ kr is considered. And before we study the 
internal model control, the direct inverse model 
control strategy will be discussed first, which is widely 
studied in neural network field. 

3.1. Direct inverse model control 
In the case of follow-up control, we can use the direct 
inverse model control method, which indeed is not a 

close-loop control problem, though there has feedback 
of process output y to the controller. It is like a time 
series predictive control strategy. The control device is 
an inverse model of the process only, which generate 
the output according to the future l -step )(kr , 
previous ''m -step known input u  and ''n -step 
known output y . The diagram of direct inverse model 
control is shown in Fig.2.  

 
Fig.2: The diagram of direct inverse model control. 

 
Since the controller is non adaptive, the quality of 

its control performance relies heavily on the fidelity of 
the inverse model, the system initial status and the 
smoothness of )(kr . So this control method can be 
only used if the inverse model is very perfect and the 
effect of disturbance can be completely ignored. 

3.2. Internal model control 
In order to overcome the drawbacks of direct inverse 
control strategy, a SVM based internal model (see 
Fig.1) is introduced to generate the feedback error. 
This error includes model mismatch and disturbance. 
And the controller generates corresponding output 
according to the set point value and error. And in this 
paper, we adopt a P-typed controller. 

Let us denote by P the nonlinear operator 
describing the process, by M the nonlinear operator 
describing the SVM based internal model, by G the 
operator describing the controller, and by Id the 
identity operator. And in operator representation, the 
system output is 
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where p denotes disturbance. The SVM based internal 
model will use the past information about y and u . 
And we can see that if the process is stable and 
internal model is perfect, the stability of the control 
system is up to the controller. 

4. Simulation 
In order to illustrate the results of SVM based internal 
model control, a plant of CSTR is selected which was 
studied in [13]. In the CSTR a first-order irreversible 
exothermic reaction BAa  occurs. The material and 
energy balance equations are: 
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The state )(1 tx  corresponds to the conversion rate of 
the reaction and 1)(0 1 ≤≤ tx ; )(2 tx  is the 
dimensionless temperature. Assume that only the 
temperature can be measured on line, i.e. 
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The parameters are given as: 
.2;8.0;072.0;3.0;8;200 ====== τλβγ aDH   
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Fig.3:  Straight model identification result. 
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Fig.4:  Straight model generalization test result 1. 
 

In this experiment, sample time is sts 1= . And we 
select 3'''''' ===== lnmnm , 10000=C , 0001.0=ε . 
SVM adopts quadratic polynomial kernel function 

2)1()( +⋅=⋅ ii xxxxK .  And we use ]1,0[∈u to generate 
one training set and two test sets. 
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Fig.5:  Straight model generalization test result 2. 
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Fig.6: Inverse model identification result. 
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Fig.7: Inverse model generalization result 1. 
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Fig.8: Inverse model generalization result 2. 



And all experiments are based on the same training 
set. In Fig.3 to Fig.8, solid lines denote system real 
output, dashed lines denote SVM identification output. 
Fig.3 shows the straight model identification result of 
the training set. Fig.4 and Fig.5 show the straight 
model generalization results of the other two test sets. 
Fig.6 shows the inverse model identification result of 
the training set. Fig.7 and Fig.8 show the inverse 
model generalization results of the other two test sets. 

From Fig.3 to Fig.8, we can see both the straight 
and inverse modeling results are good, and the 
generalization capability is also good. 

In the case of direct inverse control, we discuss 2 
situations. First, assume that )(kr  is unchangeable 
and 6.0)( =kr . Fig.9 gives the control output. And 
we can see system can track the set point at last, but in 
the first 140 sample instants, it vibrates acutely 
because ① inverse model always exists mismatch; ② 
r jumps to set point abruptly at the first sample instant; 
③ we assume system is zero initial status, so 
regression factors py  and u before the first sample 
instant are zero. Second, we choose a reference 
trajectory as below which smoothly leads to set point. 

sprr rakrakr )1()()1( −+=+                              (8) 

where 6.0=spr is the set point value, 9.0=ra  is a 
tuning factor related with the control system’s 
robustness and convergence. Fig.10 gives the 
simulation result. And we can see the control 
performance is better than that of Fig.9. System output 
can track the reference trajectory well and the overshot 
is small. And a disturbance rejection (d=0.06) is added 
when system is in steady state at time k=110s, and the 
effect on the output response is observed that after 
about 50 seconds the output will track the set point 
well again. Obviously, the re-tracking time is too long. 

From Fig.9 and Fig.10, we can see the direct 
inverse model control strategy relies heavily on the 
fidelity of the inverse model, the system initial status 
and the smoothness of )(kr . And the performance in 
dealing with disturbance rejection is not satisfying. So 
in the following, we will illustrate the simulation 
results of SVM based internal model control. In this 
control strategy, the internal model adopts SVM based 
straight model and the controller adopts the P-typed 
controller. 

Fig.11 shows the simulation results 
when 5.1=pK , 2=pK and 5.2=pK . And we find 
that system outputs are smooth. And when 2=pK , the 
control performance is very good. Now, let’s see Fig.3, 
Fig.4 and Fig.5, and we can easily see that the 
nonlinear system’s stable gain is about 0.5. This is 
why the control performance is good when 2=pK , 
which is the inverse of the nonlinear system’s stable 
gain. 

 

 
Fig.9: Direct inverse model control output 1. 

 

 
Fig.10: Direct inverse model control output 2. 

 

 
Fig.11:Internal model control outputs 
when 5.1=pK , 2=pK and 5.2=pK . 

 
Finally, the system’s performance is investigated 

under the influence of additive noise (random number 
between 2% of spr ) and a disturbance rejection 
(d=0.06) when 2=pK . Fig.12 shows the simulation 
results. And the performance in dealing with noise and 
disturbance rejection is very good. 

5. Conclusion 
In this paper, the design procedure of SV based 
inverse and straight model identification methods for 
stable nonlinear discrete-time process with input-



output form and time delay are discussed in detail. 
And direct inverse control and internal model control 
strategies for such system are proposed based on the 
SVM models. The control of a simulated CSTR 
process illustrates that the proposed design procedures 
are feasible and the properties of the SVM based 
model identification are good. Also, it shows that the 
direct inverse model control strategy relies heavily on 
the fidelity of the inverse model, the system initial 
status and the smoothness of the reference trajectory 
of set point value. Further more, it shows that the 
performance of internal model control strategy is 
better than that of direct inverse control in stabilization 
and robustness. 

 

 
Fig.12: Internal model control output when 2=pK and 
disturbance rejection and noise exist. 
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