Discrete Time Risk Model with Discounted Rate

Guzalnur Abdukadir, Lijun Wu
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P.R. China
guzalnur0908@gmail.com, xjmath@xju.edu.cn

Abstract - In this paper, we consider a discrete time risk model with discount rate. By using the recursive method, recursion formulas for distribution of the largest surplus before ruin, ruin probabilities in finite time and ultimate ruin probability are derived. Moreover, recursion formulas for the ruin lasting time are also derived.

Index Terms - Discount rate, Discrete time risk model, Finite time ruin probability, Ultimate ruin probability, Distribution of the largest surplus before ruin

1. Introduction

Ruin theory is a hot research topic of the actuarial mathematics, it is mainly because that financial company make ruin probability and it's related distribution as main indexes of investigating risk measurement, so ruin theory has strong actual guiding effects. In recent years, people are paying more and more attention to the study of ruin theory's risk model. Traditionally, most of the conclusions of the risk theory are all about continuous time, in real application, the discrete time model is more easily applied. Bowers et all discussed discrete time risk model, the model of the premiums received within the unit time is a constant, and the claims of each period regarded as an independent and identically distributed random variables. Sun and Gu studied a class of discrete time constant interest rate risk model and derived the expressions of the distribution of surplus immediately before ruin and distribution of the time in which the surplus process can be written in the following form

\[U_n^\delta(u) = u - S_n \]

(2)

where

\[S_n = \sum_{i=1}^{n} Z_i e^{-\delta i} \quad (S_0 = 0) \]

In order to guarantee the normal operation of insurance company, it must add certain risk load \(E(Z_i) < 0 \).

Let respectively \(F_X(x) \) and \(F_Y(y) \) to be the distribution functions of \(X_i \) and \(Y_i \) then the distribution function of \(Z_i \) is

\[G(u) = P\{Z \leq u\} = \int_{0}^{\infty} P\{Y - e^\delta X \leq u|X = x\}dF_X(x) \]

\[= \int_{0}^{\infty} F_Y((e^\delta x + u))dF_X(x) \]

(3)

It can be seen from (3), the distribution of net loss determine jointly by the distribution of premium and the distribution of claim.

Let \(T(u) \) be the time of ruin, obviously \(T \) is stopping time.

2. The Distribution of the Largest Surplus before Ruin

Understand the distribution of the largest surplus of insurance company before ruin and timely invest to the insurance funds, which is necessary to increase the solvency of the insurance company.

The distribution function of the largest surplus before ruin with the initial reserve \(u \) is defined as

\[H(u, x) = P\left\{ \sup_{0 \leq k < T} U_k^\delta \leq x, \quad T < \infty \mid U_0 = u \right\} \]

(4)

* Supported by the National Natural Science Foundation of China (11361058)
Obviously, if \(x < u \), then \(H(u, x) = 0 \), here we only discuss the case \(x \geq u \), from (4)
\[
H(u, x) = \sum_{n=1}^{\infty} P\{\sup_{1 \leq k < n} U_k^\delta < x, T = n \}
\]
\[
= \sum_{n=1}^{\infty} P\{0 \leq U_1^\delta < x, \ldots, 0 \leq U_{n-1}^\delta < x, U_n^\delta < 0 \}
\]
\[
= \sum_{n=1}^{\infty} P\{u - x < S_1 < u, \ldots, u - x < S_{n-1} < u, S_n > u \}
\]
\[
= \sum_{n=1}^{\infty} h_n(u, x)
\]

Where \(h_n(u, x) \) is the distribution of the largest surplus at the ruin time \(n \) by the definition we have
\[
h_1(u, x) = P\{S_1 > u\} = P\{Z_1 > u e^\delta\} = 1 - G(u e^\delta)
\]
\[
h_2(u, x) = P\{u - x < S_1 < u, S_2 > u\}
\]
\[
= P\{(u - x)e^\delta < Z_1 < u e^\delta, Z_2 > u e^\delta \}
\]
\[
= \int_{(u-x)e^\delta}^{u e^\delta} P\{S_1 > u e^\delta - s\}dG(s)
\]
\[
= \int_{(u-x)e^\delta}^{u e^\delta} h_1(u e^\delta - s, x)dG(s)
\]
\[
h_3(u, x) = P\{u - x < S_1 < u, u - x < S_2 < u, S_3 > u\}
\]
\[
= P\{(u - x)e^\delta < Z_1 < u e^\delta, (u - x)e^\delta - Z_1 < Z_2 < u e^\delta \}
\]
\[
= P\{(u - x)e^\delta - Z_1 < u e^\delta - s, S_2 > u e^\delta - s, S_3 > u e^\delta - s\}
\]
\[
= \int_{(u-x)e^\delta}^{u e^\delta} \int_{u e^\delta - s}^{u e^\delta - Z_2} P\{Z_1 < u e^\delta - s\}dG(s)
\]
\[
= \int_{(u-x)e^\delta}^{u e^\delta} \int_{u e^\delta - s}^{u e^\delta - Z_2} h_2(u e^\delta - s, x e^\delta)dG(s)
\]

By using the induction method on \(n \geq 2 \), we have
\[
h_n(u, x) = \int_{(u-x)e^\delta}^{u e^\delta} h_{n-1}(u e^\delta - s, x e^\delta)dG(s)
\]

(6)

From (4) it is clear that the series converges. From (5) and (6)
\[
H(u, x) = \sum_{n=1}^{\infty} h_n(u, x) = h_1(u, x) + \sum_{n=2}^{\infty} h_n(u, x)
\]
\[
= h_1(u, x) + \sum_{n=2}^{\infty} \int_{(u-x)e^\delta}^{u e^\delta} h_{n-1}(u e^\delta - s, x e^\delta)dG(s)
\]
\[
= 1 - G(u e^\delta) + \int_{(u-x)e^\delta}^{u e^\delta} H(u e^\delta - s, x e^\delta)dG(s)
\]

(7)

In summary, the distribution of the largest surplus of insurance company before ruin satisfies the integral equation (7).

3. Ruin Probability

Ruin probability is what the insurance company most concern, it is also the most concern of the key research risk model. In this section, by using the recursion method, we can find an integral equation satisfying finite time ruin probability and ultimate ruin probability.

3.1 Finite time ruin probability.

In the theory of ruin, more research is concerning with ultimate ruin probability due to that the finite time ruin probability is usually not easy to get, here we discuss on this issue bellow.

For \(n = 1, 2, 3, \cdots \), let
\[
\phi_n(u) = P\{T \leq n\}
\]

Then \(\phi_n(u) \) denotes the probability of ruin before or at time \(n \) with initial reserve \(u \), thus the probability of non-ruin within time \(n \) with initial reserve \(u \).
\[
\Phi_n(u) = 1 - \phi_n(u) = P\{T > n\}
\]

We obtain from the above definition
\[
\Phi_n(u) = P\{T > n\} = P\{U_n^\delta \geq 0, \ldots, U_1^\delta \geq 0\} = P\{S_n \geq u, \ldots, S_1 \geq u\}
\]

Using the recursive method, we get the following recursion formulas
\[
\Phi_1(u) = P\{T > 1\} = P\{S_1 \leq u\} = P\{Z_1 \leq u e^\delta\} = G(u e^\delta)
\]
\[
\Phi_2(u) = P\{T > 2\} = P\{S_1 \leq u, S_2 \leq u\} = P\{Z_1 \leq u e^\delta, Z_2 + \frac{Z_2}{e^\delta} \leq u e^\delta\}
\]
\[
= \int_{-\infty}^{u e^\delta} P\{S_1 \leq u e^\delta - s\}dG(s) = \int_{-\infty}^{u e^\delta} \Phi_1(u e^\delta - s)dG(s)
\]
\[
\Phi_3(u) = P\{T > 3\} = P\{S_1 \leq u, S_2 \leq u, S_3 \leq u\}
\]
\[
= P\{Z_1 \leq u e^\delta, Z_2 + \frac{Z_2}{e^\delta} \leq u e^\delta, Z_3 + \frac{Z_3}{e^\delta} \leq u e^\delta\}
\]
\[
= \int_{-\infty}^{u e^\delta} \int_{-\infty}^{u e^\delta - s} P\{S_2 \leq u e^\delta - s\}dG(s)
\]
\[
= \int_{-\infty}^{u e^\delta} \Phi_2(u e^\delta - s)dG(s)
\]

Then, recursively, for any \(n \geq 2 \)
\[
\Phi_n(u) = \int_{-\infty}^{u e^\delta} \Phi_{n-1}(u e^\delta - s)dG(s)
\]

Thus, the corresponding ruin probabilities are that
\[
\phi_1(u) = 1 - \Phi_1(u) = 1 - G(u e^\delta)
\]
\[
\phi_2(u) = 1 - \Phi_2(u) = 1 - \int_{-\infty}^{u e^\delta} \Phi_1(u e^\delta - s)dG(s)
\]
\[
= 1 - \int_{-\infty}^{u e^\delta} \left(1 - \phi_1(u e^\delta - s)\right)dG(s)
\]
\[
= 1 - \Phi_1(u e^\delta) + \int_{-\infty}^{u e^\delta} \phi_1(u e^\delta - s)dG(s)
\]

(8)
Then, recursively, for any
\[\varphi_n(u) = 1 - G(ue^\delta) + \int_{-\infty}^{ue^\delta} \phi_{n-1}(ue^{-s}) \lambda dG(s) \]

3.2 Ultimate ruin probability.
Ultimate ruin probability describes the probability of ultimate ruin of insurance company
\[\Psi(u) = P[T < \infty] \]

From the above definition we obtain
\[\Psi(u) = \sum_{n=1}^{\infty} P[T = n] = \sum_{n=1}^{\infty} P[U_1^{\delta} \geq 0, \ldots, U_{n-1}^{\delta} \geq 0, U_n^{\delta} < 0] \]
\[= \sum_{n=1}^{\infty} Q_1(u) \] \hspace{1cm} (8)

Where \(Q_n(u) \) represents the probability of ruin at moment \(n \).

Taking advantage of results of the next section, we have
\[Q_1(u) = P[U_1^{\delta} \geq 0, U_2^{\delta} < 0] = P[S_1 > u, S_2 > u] \]
\[= P[S_1 > u, S_2 > u] = P[S_1 > u, S_2 > u] \]
\[= \int_{-\infty}^{ue^\delta} Q_2(u) \lambda dG(s) \]

Recursively, for any \(n \geq 2 \)
\[Q_n(u) = \int_{-\infty}^{ue^\delta} Q_{n-1}(ue^{-s}) \lambda dG(s) \]

From (8) we obtain
\[\Psi(u) = \sum_{n=1}^{\infty} Q_n(u) = Q_1(u) + \sum_{n=2}^{\infty} Q_n(u) \]
\[= Q_1(u) + \sum_{n=2}^{\infty} \int_{-\infty}^{ue^\delta} Q_{n-1}(ue^{-s}) \lambda dG(s) \]
\[= 1 - G(ue^\delta) + \int_{-\infty}^{ue^\delta} \Psi(u)e^{-s} \lambda dG(s) \] \hspace{1cm} (9)

To sum up, the probability of ultimate ruin of the insurance company satisfies the integral equation (9).

4. The Ruin Lasting Time
After the insurance company ruins, what circumstances cause the financial affairs to be worse? How long does the predicament last? Which not only concern the fates of the insurers, but also effect the profits of the insured. In this section, we shall discuss the probability character of the ruin lasting time.

We define the time when the surplus crosses the level zero for the first time after ruin
\[\tau(u) = \inf \{ n : n > T, U_n^\delta > 0 \} \] \hspace{1cm} (10)

Thus, the ruin lasting time is that
\[\bar{T}(u) = \left\{ \begin{array}{ll} \tau(u) - T(u), & T(u) < \infty \\ 0, & T(u) = \infty \end{array} \right. \]

Then \(\bar{T}(u) = 1 \), the probability of the ruin time lasting one period is that
\[v_1(u) = P[\bar{T}(u) = 1] = P[\tau(u) = T(u) + 1] \]
\[= \sum_{k=1}^{\infty} P[\tau(u) = k + 1 | T(u) = k]P[T(u) = k] \]
\[= \sum_{k=1}^{\infty} [P(U_1^{\delta} \geq 0, U_2^{\delta} > 0, U_k^{\delta} \geq 0, U_{k+1}^{\delta} < 0)Q_k(u) \]
\[= \sum_{k=1}^{\infty} M^{(i)}_k(u) \] \hspace{1cm} (12)

Where \(Q_k(u) \) has been obtained in the preceding section. Denote
\[A_1(u) = \int_{ue^\delta}^{\infty} G((ue^\delta - s)e^\delta) \lambda dG(s) \]

will be derived in the following
\[M^{(1)}_1(u) = P[U_1^{\delta} < 0, U_2^{\delta} \geq 0] = P[S_1 > u, S_2 \leq u] \]
\[= P[S_1 > u, S_2 \leq u] = P[S_1 > u, S_2 \leq u] \]
\[= \int_{ue^\delta}^{\infty} p(Z_2 \leq (ue^\delta - s)e^\delta) \lambda dG(s) \]
\[= \int_{ue^\delta}^{\infty} G((ue^\delta - s)e^\delta) \lambda dG(s) \]

\[M^{(1)}_2(u) = P[U_1^{\delta} \geq 0, U_2^{\delta} < 0, U_3^{\delta} \geq 0] \]
\[= P[S_1 \leq u, S_2 > u, S_3 \leq u] \]
\[= P[S_1 \leq u, S_2 > u, S_3 \leq u] \]
\[= \int_{ue^\delta}^{\infty} P(S_1 > ue^\delta - s, S_2 \leq (ue^\delta - s)e^\delta) \lambda dG(s) \]
\[= \int_{ue^\delta}^{\infty} M^{(1)}_1(u)e^\delta - s \lambda dG(s) \]

By induction on \(k \geq 2 \) we have
\[M^{(1)}_k(u) = \int_{ue^\delta}^{\infty} M^{(1)}_{k-1}(ue^{-s}) \lambda dG(s) \] \hspace{1cm} (13)

which is the probability of ruining at time \(k \) and lasting one
period. Hence, the probability of the ruin time lasting one period is that

\[v_1(u) = P\{T(u) = 1\} = \sum_{k=1}^{\infty} M_k^{(1)}(u)Q_k(u) \] (14)

When \(T(u) = 2 \), similarly

\[v_2(u) = P\{T(u) = 2\} = P\{\tau(u) = T(u) + 2\} \]

\[= \sum_{k=1}^{\infty} P\{\tau(u) = k + 2|T(u) = k\}P\{T(u) = k\} \]

\[= \sum_{k=1}^{\infty} \sum_{i=1}^{k} P\{U_i^\delta \geq 0, \ldots, U_{k+1}^\delta \geq 0, U_{k+1}^\delta < 0, U_{k+2}^\delta \geq u\}Q_k(u) \]

\[= \sum_{k=1}^{\infty} M_k^{(2)}(u)Q_k(u) \] (15)

Denote

\[A_2(u) = \int_{ue^\delta}^{\infty} A_1(ue^\delta - s)dG(s) \]

From (15) we have

\[M_k^{(2)}(u) = P\{U_1^\delta < 0, U_2^\delta < 0, U_3^\delta \geq 0\} \]

\[= P\{S_1 > u, S_2 > u, S_3 \leq u\} \]

\[= P\{Z_1 > ue^\delta, Z_1 + \frac{Z_2}{e^\delta} > ue^\delta, Z_1 + \frac{Z_2}{e^\delta} + \frac{Z_4}{e^3\delta} \leq ue^\delta\} \]

\[= \int_{ue^\delta}^{\infty} p\{S_1 > u^\delta, S_2 \leq u^\delta - s\}dG(s) \]

\[= \int_{ue^\delta}^{\infty} A_1(ue^\delta - s)dG(s) = A_1(u) \]

\[M_k^{(2)}(u) = P\{U_1^\delta \geq 0, \ U_{i+2}^\delta < 0, U_{i+3}^\delta < 0, U_{i+4}^\delta \geq 0\} \]

\[= P\{S_i \leq u, \ S_2 > u, S_3 > u, S_4 \leq u\} \]

\[= P\{Z_i \leq ue^\delta, Z_i + \frac{Z_2}{e^\delta} > ue^\delta, \]

\[Z_i + \frac{Z_2}{e^\delta} + \frac{Z_3}{e^{2\delta}} > ue^\delta, Z_i + \frac{Z_2}{e^\delta} + \frac{Z_3}{e^{2\delta}} + \frac{Z_4}{e^{3\delta}} \leq u\} \]

\[= \int_{ue^\delta}^{\infty} p\{S_i > ue^\delta - s, \ S_2 > ue^\delta - s, S_3 \leq ue^\delta - s\}dG(s) \]

\[= \int_{ue^\delta}^{\infty} M_k^{(2)}(ue^\delta - s)dG(s) \]

By induction on \(k \geq 2 \) we have

\[M_k^{(2)}(u) = \int_{ue^\delta}^{\infty} M_{k-1}^{(2)}(ue^\delta - s)dG(s) \]

This yields the probability of the ruin time lasting two period is that

\[v_2(u) = P\{T(u) = 2\} = \sum_{k=1}^{\infty} M_k^{(2)}(u)Q_k(u) \] (16)

And so on, denote

\[A_n(u) = \int_{ue^\delta}^{\infty} A_{n-1}(ue^\delta - s)dG(s) \]

When \(T(u) = n \) as the same above

\[M_1^{(n)}(u) = A_n(u) \] (17)

\[M_k^{(n)}(u) = \int_{ue^\delta}^{\infty} M_{k-1}^{(n-1)}(ue^\delta - s)dG(s) \] (18)

Thus, the probability of the ruin time lasting \(n \) period is that

\[v_n(u) = P\{T(u) = n\} = \sum_{k=1}^{\infty} M_k^{(n)}(u)Q_k(u) \] (19)

5. Conclusions

It can be seen that from the integral equations derived from the model we discussed in this paper satisfy various bankruptcy indicators, as long as the distribution function of the random variable \(Z_k \) is known, we can use the recursion formula to obtain further bankruptcy described the severity of insurance company go bankrupt.

References

