Lie Algebras of Approximate Symmetries

Rafail K. GAZIZOV

Ufa State Aviation Technical University
12 K.Marx Str., 450025 Ufa, Russia
e-mail: gazizov@mathem.uaicnit.bashkiria.su

Abstract

Properties of approximate symmetries of equations with a small parameter are discussed. It turns out that approximate symmetries form an approximate Lie algebra. A concept of approximate invariants is introduced and the algorithm of their calculating is proposed.

A concept of approximate symmetry of an equation with a small parameter and algorithm of calculating such symmetries were proposed in [1] (see also [3∗–7∗]). Examples of the approximate symmetries show that such symmetries usually do not form a Lie algebra, but form a so-called approximate Lie algebra in sense of definition given in [2].

In this paper, we continue investigation of properties of approximate transformation groups and corresponding Lie algebras. In §1, the concept of the approximate Lie algebra introduced in [2] is discussed. Some properties of approximate symmetries are investigated in §2. The §3 is devoted to approximate invariants and algorithms of their calculating for one- and multiparameter groups.

The following notation is used: \(z = (z_1, \ldots, z_N) \) is an independent variable; \(\varepsilon \) is a small parameter; all functions under consideration are assumed to be locally analytic in their arguments. We write \(F(z, \varepsilon) = o(\varepsilon^p) \) if \(\lim_{\varepsilon \to 0} \frac{F(z, \varepsilon)}{\varepsilon^p} = 0 \) or, equivalently, if \(F(z, \varepsilon) = \varepsilon^{p+1}\varphi(z, \varepsilon) \), where \(\varphi(z, \varepsilon) \) is an analytic function defined in a neighborhood of \(\varepsilon = 0 \) and \(p \) is an arbitrary positive integer. If \(f(z, \varepsilon) - g(z, \varepsilon) = o(\varepsilon^p) \), we write briefly \(f \approx g \).

1 Approximate Lie algebras

Definition 1. A class of first-order differential operators

\[X = \xi^i(z, \varepsilon) \frac{\partial}{\partial z^i} \]

such that

\[\xi^i(z, \varepsilon) \approx \xi^i_0(z) + \varepsilon \xi^i_1(z) + \cdots + \varepsilon^p \xi^i_p(z), \quad i = 1, \ldots, N, \]

with some fixed functions \(\xi^i_0(z), \xi^i_1(z), \ldots, \xi^i_p(z), \quad i = 1, \ldots, N \), is called an approximate operator.
Definition 2. An approximate commutator of the approximate operators X_1 and X_2 is an approximate operator denoted by $[X_1, X_2]$ and is given by

$$[X_1, X_2] \approx X_1 X_2 - X_2 X_1.$$

The approximate commutator satisfies the usual properties, namely:

a) linearity: $[aX_1 + bX_2, X_3] \approx a[X_1, X_3] + b[X_2, X_3], \quad a, b = \text{const},$

b) skew-symmetry: $[X_1, X_2] \approx -[X_2, X_1],$

c) Jacobi identity: $[[X_1, X_2], X_3] + [[X_2, X_3], X_1] + [[X_3, X_1], X_2] \approx 0.$

Definition 3. A vector space L of approximate operators is called an approximate Lie algebra of operators if it is closed (in approximation of the given order p) under the approximate commutator, i.e., if

$$[X_1, X_2] \in L$$

for any $X_1, X_2 \in L.$ Here the approximate commutator $[X_1, X_2]$ is calculated to the precision indicated.

Example. Consider the approximate (up to $o(\varepsilon)$) operators

$$X_1 = \frac{\partial}{\partial x} + \varepsilon x \frac{\partial}{\partial y}, \quad X_2 = \frac{\partial}{\partial y} + \varepsilon y \frac{\partial}{\partial x}.$$

Their linear span is not a Lie algebra in the usual (exact) sense. For instance, the (exact) commutator

$$[X_1, X_2] = \varepsilon^2 \left(x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y} \right)$$

is not a linear combination of the above operators.

However, these operators span an approximate Lie algebra in the first-order of precision.

2 Algebraic properties of approximate symmetries

Consider a one-parameter approximate group G_1 of transformations

$$z'^i \approx f_i(z, a, \varepsilon) = f_i^0(z, a) + \varepsilon f_i^1(z, a) + \cdots + \varepsilon^p f_i^p(z, a) + o(\varepsilon^p), \quad i = 1, \ldots, N, \quad (2.1)$$

in R^N ($a \in R$ is a group parameter) with the generator

$$X = \xi^i(z, \varepsilon) \frac{\partial}{\partial z^i}. \quad (2.2)$$

Definition 4. The approximate equation

$$F(z, \varepsilon) \approx 0 \quad (2.3)$$

is said to be invariant with respect to the approximate group of transformation (2.1) if

$$F(f(z, a, \varepsilon), \varepsilon) \approx 0 \quad (2.4)$$

for all z satisfying (2.3).
Theorem 1. Let the function \(F(z, \varepsilon) = (F^1(z, \varepsilon), \ldots, F^n(z, \varepsilon)) \), \(n < N \), satisfy the condition
\[
\text{rank } F'(z, 0) \big|_{F(z, 0) = 0} = n,
\]
where \(F'(z, \varepsilon) = \| \partial F^\nu(z, \varepsilon)/\partial z^i \| \) for \(\nu = 1, \ldots, n \) and \(i = 1, \ldots, N \).

Then the equation (2.3) is approximately invariant under the approximate group \(G_1 \) with the generator (2.2) if and only if
\[
XF(z, \varepsilon) \big|_{(2.3)} = o(\varepsilon^p). \quad (2.5)
\]
Equation (2.5) is called the determining equation for approximate symmetries. If the determining equation (2.5) is satisfied, we also say that \(X \) is an approximate symmetry of equation (2.3).

Approximate symmetries satisfy the following properties:

Theorem 2. A set of approximate symmetries of an equation forms an approximate Lie algebra.

Theorem 3. If \(X \) is an approximate symmetry of some equation, then \(\varepsilon X \) is also an approximate symmetry of the same equation.

Let Lie algebra \(L_r \) of approximate symmetries be spanned by the following \(r \) approximate operators
\[
X_{\alpha_0} = X_{\alpha_0,0} + \varepsilon X_{\alpha_0,1} + \ldots + \varepsilon^p X_{\alpha_0,p},
\]
\[
X_{\alpha_1} = \varepsilon X_{\alpha_1,0} + \ldots + \varepsilon^p X_{\alpha_1,p-1},
\]
\[
\ldots
\]
\[
X_{\alpha_p} = \varepsilon^p X_{\alpha_p,0}.
\]
Here \(\alpha_1 = 1, \ldots, r_1 \), \(r_0 + \ldots + r_p = r \), \(X_{\alpha_i,k} = \xi^i_{\alpha_i,k}(z) \partial/\partial z^i \).

Theorem 4. The exact operators \(X_{\alpha_0,0}, X_{\alpha_1,0}, \ldots, X_{\alpha_r,0} \) generate an exact Lie algebra for any \(l = 0, \ldots, p \). For \(l = p \), it is a Lie algebra of exact symmetries of the exact equation \(F(z, 0) = 0 \).

Theorem 5. The approximate operators
\[
Y_{\alpha_0} = X_{\alpha_0,0} + \varepsilon X_{\alpha_0,1} + \ldots + \varepsilon^l X_{\alpha_0,l},
\]
\[
Y_{\alpha_1} = X_{\alpha_1,0} + \varepsilon X_{\alpha_1,1} + \ldots + \varepsilon^l X_{\alpha_1,l},
\]
\[
\ldots
\]
\[
Y_{\alpha_p} = \varepsilon^l X_{\alpha_0,0} + \varepsilon^l X_{\alpha_0,1},
\]
\[
Y_{\alpha_p} = \varepsilon^l X_{\alpha_p,0}
\]
form an approximate (up to \(o(\varepsilon^l) \)) Lie algebra of approximate symmetries.
3 Approximate invariants

Consider a set of the approximate transformations \(\{ T_a \} \):

\[
T_a : z' \approx f^i(z, a, \varepsilon) = f^i_0(z) + \varepsilon f^i_1(z) + \cdots + \varepsilon^p f^i_p(z) + o(\varepsilon^p), \quad i = 1, \ldots, N, \quad (3.1)
\]

in \(\mathbb{R}^N \) generating an approximate \(r \)-parameter group \(G_r \) of transformations with respect to the group parameter \(a \in \mathbb{R}^r \). Let

\[
X_a = \xi^i_a(z, \varepsilon) \frac{\partial}{\partial z^i}
\]

be basic generators of the corresponding approximate Lie algebra.

Definition 5. An approximate function \(I(z, \varepsilon) \) is called an approximate invariant of the approximate group \(G_r \) of transformations (3.1), if for each \(z \in \mathbb{R}^N \) and an admissible \(a \in \mathbb{R}^r \)

\[
I(z', \varepsilon) \approx I(z, \varepsilon).
\]

Theorem 6. The approximate function \(I(z, \varepsilon) \) is an approximate invariant of the group \(G_r \) with the basic generators (3.2) if and only if the approximate equations

\[
XF(z, \varepsilon) \approx 0 \quad (3.4)
\]

hold.

Remark. The equations (3.4) are approximate linear first-order partial differential equations with the coefficients depending on a small parameter.

Consider the case of a one-parameter approximate transformation group with the generator

\[
X = \xi^i(z, \varepsilon) \frac{\partial}{\partial z^i},
\]

where

\[
\xi^i(z, \varepsilon) \approx \varepsilon^l \left(\xi^i_0(z) + \varepsilon \xi^i_1(z) + \cdots + \varepsilon^{p-l} \xi^i_{p-l}(z) \right) + o(\varepsilon^p), \quad l = 0, \ldots, p, \quad (3.6)
\]

and vector \(\xi_0(z) = (\xi^1_0(z), \ldots, \xi^N_0(z)) \neq 0 \).

Theorem 7. Any one-parameter approximate group \(G_1 \) with the generator (3.5), (3.6) has exactly \(N - 1 \) functionally independent (when \(\varepsilon = 0 \)) approximate invariants of the form

\[
I^k(z, \varepsilon) \approx I^k_0(z) + \varepsilon I^k_1(z) + \cdots + \varepsilon^{p-l} I^k_{p-l}(z), \quad k = 1, \ldots, N - 1,
\]

and any approximate invariant of \(G_1 \) can be represented in the form

\[
I(z, \varepsilon) = \varphi_0(I^1, \ldots, I^{N-1}) + \varepsilon \varphi_1(I^1, \ldots, I^{N-1}) + \cdots + \varepsilon^{p-l} \varphi_{p-l}(I^1, \ldots, I^{N-1}) + o(\varepsilon^{p-l}),
\]

where \(\varphi_0, \varphi_1, \ldots, \varphi_p \) are arbitrary functions.
For multiparameter approximate groups, we consider a case when the corresponding approximate Lie algebra is a Lie algebra of approximate symmetries, i.e., it is obtained as a solution of some determining equation and has the form (2.6). Let

\[
\begin{align*}
\text{rank} & \begin{bmatrix}
\xi_{i_0,0}^i(z) \\
\xi_{i_1,0}^i(z) \\
\vdots \\
\xi_{i_l,0}^i(z)
\end{bmatrix} = r^*_1, \\
\end{align*}
\]

Here \(r^*_1 \leq r^*_2 \leq \ldots \leq r^*_p\). Let

\[
s_0 = N - r^*_p, \quad s_1 = N - r^*_{p-1}, \ldots, \quad s_p = N - r^*_0.
\]

Theorem 8. In this case, the multiparameter group has \(s_p\) approximate invariants

\[
I^1(z, \varepsilon) \approx I^1_0(z) + \varepsilon I^1_1(z) + \ldots + \varepsilon^p I^1_p(z) \equiv J^1,
\]

\[
I^{s_0}(z, \varepsilon) \approx I^{s_0}_0(z) + \varepsilon I^{s_0}_1(z) + \ldots + \varepsilon^p I^{s_0}_p(z) \equiv J^{s_0},
\]

\[
I^{s_0+1}(z, \varepsilon) \approx \varepsilon \left(I^{s_0+1}_0(z) + \varepsilon I^{s_0+1}_1(z) + \ldots + \varepsilon^p I^{s_0+1}_{p-1}(z) \right) \equiv \varepsilon J^{s_0+1},
\]

\[
I^{s_p}(z, \varepsilon) \approx \varepsilon^p I^{s_p}_0(z) \equiv \varepsilon^p J^{s_p},
\]

with functionally independent functions \(I^k_0(z), k = 1, \ldots, p\) and any approximate invariant of \(G_r\) can be represented in the form

\[
I(z, \varepsilon) \approx \varphi_0(J^1, \ldots, J^{s_0}) + \varepsilon \varphi_1(J^1, \ldots, J^{s_1}) + \ldots + \varepsilon^p \varphi_p(J^1, \ldots, J^{s_p}),
\]

where \(\varphi_0, \varphi_1, \ldots, \varphi_p\) are arbitrary functions.
References

[7] * Euler N. and Euler M., Symmetry properties of the approximations of multidimensional generali-

†References [3∗–7∗] were added by editor.