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Abstract

A brief review is presented of the two recent perturbation algorithms. Their common
idea lies in a not quite usual treatment of linear Schrödinger equations via nonlinear
mathematical means.

The first approach (let us call it a quasi-exact perturbation theory, QEPT) tries to
get the very zero-order approximants already “almost exact”, at a cost of leaving the
higher-order computations more complicated. Technically, it constructs and employs
solutions of certain auxiliary nonlinear systems of algebraic equations for the suitable
zero-order couplings and energies.

The second approach (a fixed-point perturbation theory, FPPT) pays more atten-
tion to the higher-order corrections. Its purpose lies in an improvement of construction
of unperturbed propagators or, alternatively, of the closely related (so–called effective)
finite-dimensional auxiliary Hamiltonians. On a technical level, it employs a factor-
ization interpreted via certain nonlinear mappings and, finally, approximates some
matrix elements by fixed points of these mappings.

In a broad context of the “generalized Rayleigh-Schrödinger” perturbation strat-
egy, both the prescriptions need just more summations over “intermediate states”.
QEPT defines its nondiagonal unperturbed propagators in terms of infinite continued
fractions. FPPT introduces a further simplification via another finite system of non-
linear algebraic equations for fixed points. Thus, both the subsequent QE and FP
steps of construction share the same mathematics.

1 The two modified perturbation theories

1.1 Motivation

In the various perturbative approaches to particular equations, a key role is often played
by computerized algebraic manipulations. In this setting, the present review summarizes
and slightly extends my own results contained in papers [1] and [2]. The first reference
deals mostly with the nonlinear Magyari equations and QEPT H0’s. The second pair pays
attention to the fixed points of nonlinear mappings and to their explicit constructions and
use in FPPT. My overall message is a little bit nonstandard: Usually, nonlinear equations
(generated, e.g., by phenomenological considerations) are being solved by their formal
(e.g., approximative or inverse-scattering) linearization. Here, I am going to sample an
efficiency of the opposite strategy and treatment of a linear physical system via nonlinear
mathematical techniques.

In the past, my effort was motivated by immanent limitations of the textbook pertur-
bation theory: Literature abounds with the examples (e.g., the famous quartic anharmonic
oscillator is well known to lead to the divergent Rayleigh–Schrödinger series for energies,
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E(g) = E(0)+gE(1)+g2E(2)+. . ., at an arbitrary value of coupling g). In a less perturbative
and/or nonperturbative context, parallel applications of nonlinearizations are also not rare
in the literature. One might quote the so–called Hill determinant method which defines
physical energies as roots of certain infinite-dimensional determinants and leads to a brand
new field of applicability of the idea of symmetry (e.g., a hidden symmetry between the
physical and spurious roots [3]).

Similar nonlinearizations and spuriosities which may be related to symmetries arise
also in the so-called Riccati–Padé method of quantum chemistry (cf. ref. [4], with a
puzzling threshold – asymptotics symmetry), in the universal coupled cluster approach to
the general many-body problem (cf., e.g., a review [5] where a certain highly sophisticated
symmetry between the classical and quantum descriptions has been mentioned) etc.

For the sake of transparency of the presentation, we shall start from a particle confined
in a particular Flessas–Gallas double well potential [6]

V (x) = x2 + F
g x2

1 + g x2
, F = F (g) = −4− 6 g.

Traditionally, in the corresponding Schrödinger equation[
H(HO) − F

1 + g r2

]
Ψ(r) = EΨ(r), E = k2 − F

one perturbes harmonic oscillator H(HO) =
∑∞

0 |n〉εn〈n|, εn = 4n+2`+3, in a way which
exhibits an unpleasant quasi-nonperturbative g-dependence (E(g) proves to be strongly
curved near the zero-order harmonic oscillators g ≈ 0).

In our first, nontraditional QEPT approach, we employ and extend the ideas of Lanczos
and Whitehead et al. [7] and make the eigenvalue problem tridiagonal,

A0 B0

C1 A1 B1

C2 A2 B2

. . .




(ε0 − E) Ψ0

(ε1 − E) Ψ1

(ε2 − E) Ψ2

. . .

 = 0,

Ak =
g

2
εk + 1− F

εk − E
, Bk = Ck+1 = g

√
(k + 1)(k + `+ 3/2).

In such a setting, one may generate certain particular, closed-form states even at some
nonzero g = g(N)’s (cf. [6]).

In the vicinity of these “quasi-harmonic” zero-order solutions, the energies E(g) form
the nice and smooth (virtually linear!) lines. This is an intuitive explanation of the high
precision of the zero-order QEPT approximants as well as of the marvelous convergence
of the related simplified FPPT series near the Gallas states [8].

A characteristic feature of our example is an extreme simplicity of its technical aspects.
Indeed, the Magyari-like construction of the QEPT zero-order states is virtually trivial [7].
Due to the above mentioned tridiagonality of Ho, one also encounters the easily solvable
fixed-point equations as well as a closed form of the higher-order fixed-point corrections.
Hence, a real technical challenge will only be encountered at the more complicated inter-
actions. A generalized Morse potential will be picked up as an illustration.
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1.2 The zero-order QEPT approximations

The Gallas’ terminating harmonic-oscillator-like zero-order solutions cannot exist at εk −
E 6= 0 since Bk 6= 0. Thus, one must fix E = εN . As a consequence, we may write
Ψ(r) ≡ (1+g r2)×ϕ(r) and use the (N+1)-st row of our tridiagonal algebraic Schrödinger
equation as a simple definition of energy. As long as the N -th row then implies that
ϕN = 0, while oscillation theorem adds ϕN+1 = 0, ϕN+2 = 0, . . ., we arrive, in accord
with the above-quoted Whitehead’s paper and its slight modification, at the single Magyari
equation Qϕ = 0 with an N -dimensional matrix Q,

(ε0 − εN )A0 (ε0 − εN )B0

(ε1 − εN )C1 (ε1 − εN )A1 (ε1 − εN )B1

(ε2 − εN )C2 (ε2 − εN )A2 (ε2 − εN )B2

. . .
(εN−1 − εN )CN−1 (εN−1 − εN )AN−1


and with the subsequent Gallas’ observations of the existence, uniqueness, and reality of
the root g = g(N) or, in the other perspective, of the quasi-oscillator zero-order family of
states numbered by the integer N .

1.3 The higher-order FPPT corrections

With the operator H0 − E0I factorized,

H0 − E0I = (I + Ω)


F0 0 . . .
0 F1 0 . . .
0 0 F2 0 . . .

. . .

 (I + Ω+),

Ωnn = Ωnn−1 = . . . = Ωn0 = 0

one analyzes each zero-order equation

H0 |ψ0〉 = E0 |ψ0〉

quite easily – with F0 = 0 premultiplied by (I + Ω)−1 = I − Ω + Ω2 − . . ., we get

Q(I + Ω+)|ψ0〉 = 0,

Q = I − |0〉 〈0| =
∞∑

n=1

|n〉 〈n|

i.e., an equation which becomes immediately solvable,

〈m|ψ0〉 = (−1)m 〈0|ψ0〉 × detP [m],

P [m] =


(Ω+)1,0 1 0 . . . 0
(Ω+)2,0 (Ω+)2,1 1 0 . . .

. . .
(Ω+)m−1,0 . . . (Ω+)m−1,m−3 (Ω+)m−1,m−2 1
(Ω+)m,0 . . . (Ω+)m,m−3 (Ω+)m,m−2 (Ω+)m,m−1

 .
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Now, the perturbative higher-order formulae remain standard. With |τ0〉 = 0 and

(H0 − E0I) |ψk〉+ (Hk − Ek) |ψ0〉+ |τk−1〉 = 0, k = 1, 2, . . . , 0 0 . . .
0 F1 0 . . .

. . .

 (I + Ω+)|ψk〉+ (I + Ω)−1[(Hk − Ek)|ψ0〉+ |τk−1〉] = 0,

|τk−1〉 = (Hk−1 − Ek−1)|ψ1〉+ (Hk−2 − Ek−2)|ψ2〉+ . . . (H1 − E1)|ψk−1〉

we may project out the energies as a mere abbreviation,

Ek =
〈0|(I + Ω)−1Hk|ψ0〉+ 〈0|(I + Ω)−1|τk−1〉

〈0|(I + Ω)−1|ψ0〉
and construct the PT expansions in a routine way.

2 FPPT and the factorization of propagators

Technically, a useful nilpotency emerges after an arbitrary approximative truncation of
matrices,

(Ωm)n,n+m−1 = (Ωm)n,n+m−2 = . . . = (Ωm)n,0 = 0, m = 1, 2, . . . .

Renormalizing |ψk〉 → |ψk〉+ const |ψ0〉 into 〈0|ψk+1〉 = 0, i.e., F1 0 . . .
0 F2 0 . . .

. . .

 (Q+QΩ+Q)

 〈1|ψk〉
〈2|ψk〉
. . .

 =

 〈1|ρ〉
〈2|ρ〉
. . .

 ,
|ρ〉 = −(I + Ω)−1[(Hk − Ek)|ψ0〉+ |τk−1〉]

we get the final formula

〈m+ 1|ψk〉 = 〈m+ 1|[Q−QΩ+Q+ (QΩ+Q)2 − . . .+ (±1)m(QΩ+Q)m]× 1/F1 0 . . .
0 1/F2 0 . . .

. . .

Q|ρ〉, m = 0, 1, . . .

for wavefunctions. Thus, obviously, the factorization and construction of Ω’s is a key
technical problem. Its solution may either be based on the use and/or generalization
of the so-called continued fractions or on an alternative approximation technique. In
the latter context, various FPPT and FPPT-like prescriptions have been proposed and
analyzed in the related literature (cf., e.g., the list of references in [2]).

The most universal recipe may directly start from the finite submatrices
[Rn,n − E0] Rn,n+1 . . . Rn,n+m

Rn+1,n [Rn+1,n+1 − E0] . . . Rn+1,n+m

. . . . . .
Rn+m−1,n Rn+m−1,n+1 . . . Rn+m−1,n+m

Rn+m,n Rn+m,n+1 . . . [Rn+m,n+m − E0]

 ,
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which, when factorized,
gn a1 a2 . . . am

a?
1 gn+1 b1 b2 . . . bm−1

. . . . . .
a?

m−1 b?m−2 . . . z1
a?

m b?m−1 . . . gn+m

 =


1 u1 u2 . . . um

0 1 v1 v2 . . . vm−1

. . .
0 . . . 0 1

×


f

[n,m]
n 0 . . . 0
0 f

[n,m]
n+1 0 . . . 0

. . .

0 . . . 0 f
[n,m]
n+m

×


1 0 . . . 0
u?

1 1 0 . . . 0
u?

2 v?
1 1 0 . . .

. . .
u?

m v?
m−1 . . . 1

 ,

define the auxiliary quantities

Un = u
[0,m]
k , Vk = u

[1,m]
k , Wk = u

[2,m]
k , Fk = f

[k,m]
k , k = 1, 2, . . . .

Vice versa, reconstruction of the zero-order Hamiltonian may be prescribed by the formula 1 U1 U2 . . . Um . . .
0 1 V1 V2 . . . Vm−1 . . .

. . .

×


0 0 . . .
0 F1 0 . . .
0 0 F2 0 . . .
0 0 0 F2 0 . . .

. . .

×


1 0 . . .
U?

1 1 0 . . .
U?

2 V ?
1 1 0 . . .

U?
3 V ?

2 W ?
1 0 . . .

. . .

 =


(H0)00 − E0 (H0)01 (H0)02 . . .

(H0)10 (H0)11 − E0 (H0)12 . . .
. . . . . .

(H0)k0 (H0)k1 . . . (H0)kk − E0 (H0)kk+1 . . .
. . . . . .


which enables us to make the perturbation sufficiently small by the construction itself.

3 QEPT and the zero-order approximants

A common feature of the present perturbative prescriptions lies in the immanent incom-
pleteness of unperturbed spectra. As a technically less trivial example, let us consider a
generalized exponential Morse-like oscillator equation [9],[

− d2

dr2
+ V (r)

]
ψ(r) = E ψ(r), r ∈ (−∞,∞),

V (r) = A
(
1− e−µ (r−rα)

)2
+B

(
1− e−µ (r−rβ)

)3
+ C

(
1− e−µ (r−rγ)

)4
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which, under the Liouvillean [10] change of variables

r → R = R(r) ≡ exp(− r) ∈ (0,∞), ψ(r) → φ(R) = R1/2ψ(r)

proves equivalent to the more common sextic anharmonic oscillator,[
− d2

dR2
+
L(L+ 1)

R2
+ V (Liouv.)(R)

]
φ(R) = ε φ(R),

V (Liouv.)(R) = g2R
2 + g4R

4 + g6R
6,

g2 = A exp(4rα) + 3B exp(4rβ) + 6C exp(4rγ),

g4 = −B exp(6rβ)− 4C exp(6rγ),

g6 = C exp(8rγ) > 0,

ε = 2A exp(2rα) + 3B exp(2rβ) + 4C exp(2rγ),

L = −1
2 +

√
A+B + C − E > −1

2 .

In accord with Singh et al [11], there are no problems with the explicit QE constructions
of the separate as well as multiple (i.e., a finite number of) bound states of the latter
system.

From the purely physical point of view, the Liouvillean transition to the generalized
Morse interactions makes the QE zero-order problem less trivial.

3.1 The construction of singlets

In spite of the obvious fact that all the Liouville-equivalent QE wavefunctions preserve
the same Singh-like elementary form

φ(elementary)(R) = e−G(R) RL+1
N∑

n=0

hnR
2n, L > −1

2 ,

G(R) =
1
4
λR4 +

1
2
ξR2, λ =

√
C exp(4rγ) > 0, ξ = g4/(2λ)

the particular generalized Morse oscillator energies remain only parametrized by a single
real angular-momentum-like parameter L,

E = A+B + C − Z2, Z = L+ 1
2 > 0.

In a detailed application of the general QE Singh-like prescriptions [12], the insertion of
the elementary wavefunction Ansatz converts the differential Schrödinger equation into
recurrences,

Bnhn+1 = C(0)
n hn + C(1)

n hn−1,

Bn = 4 (n+ 1) (n+ Z + 1), Z ≡ L+ 1
2 ,
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C(0)
n = 2ξ(2n+ Z + 1)− ε, C(1)

n = 2λ(2n+ Z)− ξ2 + g2, n = 0, 1, . . . .

The termination requirements

h0 6= 0, hN 6= 0, hN+1 = hN+2 = . . . = 0

define then the wavefunctions in the same closed form as in the sextic case above,

hn+1 =
h0∏n

k=1Bk
detH [n], n = 0, 1, . . .

H [n] =



C
(0)
0 −B0

C
(1)
1 C

(0)
1 −B1

0 C
(1)
2 C

(0)
2 −B2

. . .

. . . 0 C
(1)
n C

(0)
n


.

In accord with Magyari [12], the subsequent insertion of these determinantal formulae in
the termination requirements specifies just the QE solvability constraints in an explicit
manner.

In our generalized Morse example, the first, scalar Magyari equation reads

C
(1)
N+1 (= 2λ(2N + Z + 2)− ξ2 + g2) = 0

and remains a simple linear definition, say, of a coupling g2 = g2(z,N). We may fix the
origin here, λ = 1/2. The second Magyari condition

detQ[N ](x, y, z) = 0

couples then the remaining three free parameters, say, x (= ε), y (= − 2 g4 ≡ − g4/λ),
and z (≡ Z(0)) = (g4)2/(2λ)3 − g2/(2λ)− 2 together.

The multiplet of the QE energies is defined, in contrast to the sextic case, by the
explicit formula

E = E(z,N) = E
(solvable)
N = −4N2 + 4Nz +A+B + C − z2,

N = 0, 1, . . . , Nmax, Nmax = − entier [− z/2].

Thus, the QE energy levels are numbered by the integer N again. Nevertheless, at each
particular value of N , we have now a different matrix Q[N ](x, y, z),

x+ y(Z + 1) 4 + 4Z
2N x+ y(Z + 3) 16 + 8Z

. . .
4 x+ y(Z + 2N − 1) 4N2 + 4NZ

2 x+ y(Z + 2N + 1)


and, hence, a different algebraic Magyari equation,

x+ y (z + 1) = 0, N = 0,
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x2 + 2 y z x+ y2 (z2 − 1) + 8 (1− z) = 0, N = 1,

x3 + y x2 (3 z − 3) + x [y2 (3 z2 − 6 z − 1) + 16 (5− 2 z)] + y (z − 3) [y2 (z2 − 1)+

16 (1− 2 z)] = 0, N = 2,

x4 + y x3 (4 z − 8) + x2 [y2 (6 z2 − 24 z + 14) + 80 (4− z)] + 4 y x [y2 (z3 − 6 z2+

7 z + 2)− 8 (5 z2 − 30 z + 34)] + (z − 5) [y4 (z − 3) (z2 − 1)− 16 y2×

(5 z2 − 15 z + 4) + 576 (z − 3)] = 0, N = 3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each of these equations possesses exactly N + 1 real roots x = x(y, z). Thus, for the class
of potentials in question, the desired zero-order QE bound states always exist and form a
two-parametric family in general.

3.2 The construction of doublets

Let us try to analyze the existence of doublets of the QE states now. Implicitly, they are
defined by the pair of coupled Magyari equations

detQ[N ](x, y, z) = 0, N ≥ 0,

detQ[M ](x, y, z) = 0, M > N.

From the corresponding menu of the polynomial Magyari equations, each of which pos-
sesses N + 1 real roots x = x(y, z) and, simultaneously, M + 1 real roots y = y(x, z),
one has to determine now a mutually selfconsistent doublet solution. Let us proceed
constructively.

3.2.1 N = 0

Putting N = 0 and eliminating x = − y(z+1) in the simplest possible subcase, the answer
has an implicit form

8 (1− z) = 0, M = 1, z > 2,
64 y (z − 2) = 0, M = 2, z > 4,
576 (3− z)[y2 − (z − 5)] = 0, M = 3, z > 6,
2048 y (z − 4) [3 y2 − 2 (4 z − 25)] = 0, M = 4, z > 8,

12800 (5− z) [6 y4 + y2 (217− 29 z) + 9 (z − 9) (z − 7)] = 0, M = 5, z > 10,

221184 y (z − 6) [5 y4 + y2 (322− 37 z) + 4 (8 z2 − 148 z + 675)] = 0,

M = 6, z > 12,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The explicit and closed-form real roots y = ym(M, z) do exist, indeed,

y1(2, z) = 0,

y1,2(3, z) = ±
√
z − 5,

3 y1,2(4, z) = ±
√

24 z − 150,

6 y1,2,3,4(5, z) = ±
√

87 z − 651 ± 3
√

625 z2 − 9130 z + 33481,

y1,2,3,4(6, z) = ±
√
±
√

729 z2 − 11988 z + 49684 + 37 z − 322/
√

10,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The finite normalization of the wavefunctions must be guaranteed of course. Its explicit
condition has a simple form z > c(M) with c(3) = 5, c(4) = 6.25, c(5) = 9, c(6) =
10.34, . . . .

3.2.2 N = 1

Putting N = 1 and eliminating ε(1) = x1,2 = −y z ±
√
y2 + 8 z − 8 with plus or minus

sign (i.e., with the two alternative V ’s), we get

8 (3− z) (3
√
y2 + 8 z − 8− y) = 0, M = 2,

128 (z − 4) (2 y
√
y2 + 8 z − 8− y2 − 12) = 0, M = 3,

. . . . . . . . . . . . . . . . . . . . . . . .

M = 2 is unacceptable, but one may use

√
3 y1,2(3, z) = ±2

√
2
√

4 z2 − 14 z + 19− 4 z + 7 =

±2
√

2
√

4 a2 + 34 a+ 79− 4 a− 17, a = z − 6 > 0

etc.

3.3 The construction of triplets

A much longer story of triplets starts with the Magyari set

detQ[N ](x, y, z) = 0, N ≥ 0,
detQ[M ](x, y, z) = 0, M > N,
detQ[K](x, y, z) = 0, K > M

which provides no solutions at (N,M,K) = (0, 1,K) and (N,M,K) = (1, 2,K) and,
perhaps (= conjecture) no solutions at any (N,M,K) = (N,N + 1,K). Also the explicit
solutions with zi(N,M,K) = zi(0, 2, 2 k + 1) = 2k + 2i + 1 remain unnormalizable. At
the same time, with (N,M,K) = (0, 2, 2 t), t = 2, 3, . . . and x = y = 0, one gets the
normalizable

qk (≡ h2k) = (−1)k4−k

(
t
k

)
Γ(1 + Z/2)

Γ(k + 1 + Z/2)
q0, k = 0, 1, . . . , t
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which, as a test, reproduce just the Laguerre polynomials pertaining to the well-known
ordinary Morse case when properly re-scaled (µ→ µ/2).

3.3.1 (0,3,K)

The first two nontrivial and compact triplet-state results read

z{1} = z3(0, 3, 7) =
(
126 +

√
7417

)
/11 ≈ 19.28381877 ( > 14),

z{2} = z3(0, 3, 8) =
(
563 + 18

√
3039

)
/91 ≈ 17.09107983 ( > 16)

and result from quadratic equations. Similarly, further equations read

81 z2 − 1694 z + 5325 = 0, K = 9,
374 z3 − 20441 z2 + 229555 z + 245840 = 0, K = 10,
1729 z4 − 55730 z3 − 470604 z2 + 20580178 z − 71914325 = 0, K = 11,

. . . . . . . . . . . . . . . . . . . . . . . .

Some of them remain solvable nonnumerically and we get

z{3} = z4(0, 3, 10) =
√

160273771 sin[(θ + π)/3]/561 + 20441/1122 ≈ 38.0864 > 20,

tg θ = 8
√

726279854616578142691575099403044347355
2427112467348350355585

,

z{4} = z5(0, 3, 11) = . . . ≈ 29.319614 > 22

in the first few simplest cases.

3.3.2 (0,4,K)

Mutatis mutandis, one has equations

33649 z3 − 1432887 z2 + 8607483 z − 7813045 = 0, K = 9,
16016 z3 − 399768 z2 − 1531515 z + 14532070 = 0, K = 10,
96135 z4 + 45620 z3 − 87827630 z2 + 696931300 z − 1172415169 = 0, K = 11,

and a physically acceptable pair of roots

z{5} = z2(0, 4, 9) = 8
√

8224066447 sin[(φ+ π)/3]/33649 + 477629/33649 ≈ 35.57662,

tg φ = 5
√

16431691081236520032956144866990550350030008502
260640269959315432063878

,

z{6} = z4(0, 4, 10) =
√

1620838101 sin[(ψ + π)/3]/2002 + 16657/2002 ≈ 27.24785,

tgψ = 26217
√

1744721478818204141179114862880068355
58154543543305571091730

,

z{7} = z5(0, 4, 11) = . . . ≈ 25.153897 > 22 . . . .
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3.3.3 (1,3,K)

From

7075 z3 − 15 z2 (80 v + 5739) + 15 z (796 v + 19651)− 24780 v − 271915 = 0, K = 4,

. . . . . . . . . . . . . . . . . . . . . . . .

one eliminates v =
√

64(4z2 − 14z + 19)/9 and gets

13475 z4 − 196000 z3 + 725114 z2 − 659040 z − 272925 = 0, K = 4,
560 z3 − 8351 z2 + 33096 z − 33260 = 0, K = 5,

. . . . . . . . . . . . . . . . . . . . . . . .

with our final non-numerical parameter

z{8} = z2(1, 3, 4) = . . . ≈ 9.3974688 > 8.

and its many further numerical descendants,

z{9} = z2(1, 3, 6) = . . . ≈ 15.07882 > 12

(an eight-degree polynomial needed) etc.

4 S u mma r y

We reviewed our two recent perturbative constructions of bound states. With a methodical
guide and inspiration being found in the simple Schrödinger - Gallas example, we succeeded
in a reduction of all the necessary mathematics to the solution of the nonlinear (coupled,
polynomial) algebraic equations. With a thorough assistance of the computerized symbolic
manipulations, our first (Rayleigh-Schrödinger-inspired) QEPT prescription and its FPPT
modification have been applied to the standard double-well Gallas oscillator.

A rich structure of the QE solutions has also been discovered for the more realistic
generalized Morse exponential oscillators. The existence as well as an utterly unexpected
simplicity of the corresponding QE singlets, doublets, and triplets of nonnumerical (!)
solutions seems to be a highly challenging open question now. The traditional simple-
minded Lie-algebraic explanation of their existence, structure, and normalizability seems
to fail.

In the latter, technically less trivial example, the FPPT construction was not finished
yet. Nevertheless, as long as the applicability of a fixed-point perturbation theory seems
to reach far beyond the scope of the related higher-order QEPT constructions (which,
traditionally, would employ just the analytic and/or generalized infinite continued fractions
as an auxiliary semi-numerical tool), we have also reviewed here the general FPPT scheme
of construction of the (asympotic) “best effective Hamiltonians”, without any infinite
continued fraction expansions. The basic idea of their present FPPT replacement by
some finite-expansion quantities seems promising – its “small” perturbation parameter is
artificial and coincides, roughly speaking, with the inverse model-space dimension.
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