On Symmetry Reduction of Nonlinear Generalization of the Heat Equation

Valentyn MARCHENKO

Department of Mathematics, Pedagogical University, Ostrogradsky Street 2, 314003, Poltava, Ukraine

Abstract

Reductions and classes of new exact solutions are constructed for a class of Galilei-invariant heat equations.

It is well-known that the n-dimensional linear heat equation

$$ku_t = u_{11} + \ldots + u_{nn}$$

(1)

where $u_t = \frac{\partial u}{\partial t}, u_{ij} = \frac{\partial^2 u}{\partial x_i \partial x_j}$, is invariant under the extended complete Galilei algebra $\tilde{A}_G(1, n)$. Unfortunately, the equation (1) cannot describe a great number of real processes of heat and mass transfer. The known nonlinear generalization of the equation (1)

$$u_t + \nabla (F(u) \nabla u) = 0$$

(2)

is invariant under the Galilei algebra only if $F(u) = $ const. Galilei-invariant nonlinear generalizations of the equation (1) were described in the paper [1].

Let formulate the necessary results. Consider the equation of the second order

$$u_t + F(t, \mathbf{x}, u, u_1, u_2) = 0,$$

(3)

where u is the set of s-th order partial derivatives of u with respect to the space variables x_1, x_2, \ldots, x_n ($s = 1, 2$).

The equation (3) is invariant under the extended classical Galilei algebra $\tilde{A}_G(1, n)$ iff it is of the form

$$u_t + \frac{1}{2m} (\nabla u)^2 + \Phi(<1>, <2>, \ldots, <n>) = 0,$$

(4)

where Φ is an arbitrary smooth function, $m = $ const.
of the rank \(F\) where \(\omega\) is an arbitrary smooth function. It allows us to use the results of the paper [3].

As in [3], in the present paper we confine ourselves by consideration of such subalgebras which do not contain operator \(M\).

Let \(AO[p, q] = <J_{ab}; a, b = p, \ldots, q>\);

\[
\Phi(d_0, d_1, \gamma_1) = <G_{d_0} + \gamma_1 P_{d_0}, \ldots, G_{d_0} + \gamma_1 P_{d_1} > + AO[d_0, d_1];
\]

AE\((n - k) = <P_{k+1}, \ldots, P_n > + AO[k + 1, n] \ (0 \leq k \leq n - 1);\)

AE\((n - n) = AE(0) = 0;\)

AE\(_1(n - k) = <G_{k+1}, \ldots, G_n > + AO[k + 1, n] \ (0 \leq k \leq n - 1);\)

AE\(_1(n - n) = AE_1(0) = 0.\)

Let \(d_1, \ldots, d_p\) be natural numbers which satisfy the condition \(1 = d_0 < d_1 < \ldots < d_p \leq n\). With respect to \(\hat{G}(1, n)\)-conjugation, the algebra \(AG(1, n)\) contains 6 maximal
subalgebras of the rank n. For each of these algebras we show a corresponding ansatz and reduced equation.

1) $AE(n)$: \(u = \varphi(t), \quad \dot{\varphi} + \Phi(0; 0; \ldots; 0) = 0. \)

2) $\Phi(1, d_1, \gamma_1) \oplus \ldots \oplus \Phi(d_{p-1} + 1, d_p, \gamma_p) \oplus AE(n-k)$ \((d_p = m; 1 \leq k \leq n) : \)
\[
u = \frac{m}{2} \sum_{j=1}^{p} \left(\frac{x_{d_j-1}^2 + \ldots + x_{d_j}^2} {t - \gamma_j} \right) + \varphi(t), \quad \dot{\varphi} + \Phi(m\sigma_1; m^2\sigma_2; \ldots, m^k\sigma_k; 0; \ldots; 0) = 0, \]
where
\[
\sigma_1 = y_1 + y_2 + \ldots + y_k, \\
\sigma_2 = y_1y_2 + y_1y_3 + \ldots + y_{k-1}y_k, \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
\sigma_k = y_1y_2 \ldots y_k
\]
are the elementary symmetrical polynomials and \(y_1 = \ldots = y_{d_1} = \frac{1}{\omega - \gamma_1}, \)
\(y_{d_1+1} = \ldots = y_{d_2} = \frac{1}{\omega - \gamma_2}, \ldots, y_{d_{p-1}+1} = \ldots = y_{d_p} = \frac{1}{\omega - \gamma_p}. \)

3) \(< T + \alpha M, J_{12} + \beta M > \oplus AE(n-2) \) \((\alpha, \beta \in R) : \)
\[
u = \alpha mt + \beta \arctan \left(\frac{x_1}{x_2} \right) + \varphi(x_1^2 + x_2^2), \]
\[
\alpha m + \frac{1}{2m} (\beta^2 \omega^{-1} + 4\omega \dot{\varphi}^2) + \Phi(4\dot{\varphi} + 4\omega \ddot{\varphi}; 4\dot{\varphi}^2 + 8\omega \ddot{\varphi} - \beta^2 \omega^{-2}; 0; \ldots; 0) = 0.
\]

4) \(< T + \alpha M > \oplus AE(n-1) \) \((\alpha \in R) : \)
\[
u = \alpha mt + \varphi(x_1), \quad \alpha m + \frac{1}{2m} \dot{\varphi}^2 + \Phi(\ddot{\varphi}; 0; \ldots; 0) = 0.
\]

5) \(< T + \alpha G_1 > \oplus AE(n-1) \) \((\alpha > 0) : \)
\[
u = \alpha mtx_1 - \frac{1}{3} \alpha^2 m \beta^3 + \varphi(\alpha t^2 - 2x_1), \quad -\frac{\alpha m}{2} \omega + \frac{2}{m} \dot{\varphi}^2 + \Phi(4\ddot{\varphi}; 0; \ldots; 0) = 0.
\]

6) \(< T + \alpha M > \oplus AO[1, k] \oplus AE(n-k) \) \((\alpha \in R; 3 \leq k \leq n) : \)
\[
u = \alpha mt + \varphi \left(\sum_{i=1}^{k} x_i^2 \right), \quad \alpha m + \frac{2}{m} \omega \dot{\varphi}^2 + \Phi(y_1; \ldots; y_k; 0; \ldots; 0) = 0,
\]
where \(y_p = \frac{2^p(k-1)!}{(k-p)!p!} (\ddot{\varphi})^{p-1} (k\ddot{\varphi} + 2p\omega \ddot{\varphi})(p = 1, \ldots, k). \)

References

