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Abstract

Nonclassical infinitesimal weak symmetries introduced by Olver and Rosenau and
partial symmetries introduced by the author are analyzed. For a family of nonlinear
heat equations of the form ut = (k(u) ux)x + q(u), pairs of functions (k(u), q(u)) are
pointed out such that the corresponding equations admit nontrivial two-dimensional
modules of partial symmetries. These modules yield explicit solutions that look like
u(t, x) = F (θ(t) x + φ(t)) or u(t, x) = G(f(x) + g(t)).

1 Introduction

Bluman and Cole ([1]) considered the two-dimensional linear heat equation
ut = uxx with addition of the first order differential equation that was a necessary and
sufficient condition of invariance of functions under a certain vector field of infinitesimal
point transformations. The vector field was taken a classical infinitesimal symmetry of the
system. The symmetries of that type draw a considerable attention (see [2], [3], [4] and
references therein). In [5], [6] involutive modules of vector fields of contact infinitesimal
symmetries were considered. They were called partial symmetries. It was demonstrated
that the modules of the partial symmetries are closely related to the differential substitu-
tions of the Hopf-Cole type, the Bäcklund transformations, functionally invariant solutions
of Smirnov and Sobolev, and so on. Fushchych et al. proposed to attach additional dif-
ferential equations which are differential invariants of the classical Lie symmetry group to
the differential equations admitting the classical symmetry groups and to find the classical
symmetries of the attached system ([2]). It is evident that in general the group thus ob-
tained is an extension of the classical group of the original differential equation. Olver and
Rosenau considered a new type of nonclassical symmetries. Their weak symmetries were
defined as groups G of transformations such that G-invariant solutions could be obtained
from the reduced equations in fewer independent variables ([7], [8]).
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2 Two-dimensional modules of partial symmetries

Consider the k-th order nonlinear differential equation

∆(t, x, u, p) = 0 (1)

for the real-valued function u(t, x) and consider a pair of contact vector fields Xf and Xg

with functionally independent characteristic functions f and g and try to figure out when
the reduction of equation (1) to an algebraic equation is possible for obtaining invariant
under Xf and Xg solutions. Let Ef,g be a submanifold determined by the pair of equations

f(t, x, u, pt, px) = 0, g(t, x, u, pt, px) = 0 (2)

satisfied by the functions invariant under Xf and Xg. It is well known that system (2) is
compatible under the relation

(f, g)
∣∣∣
Ef,g

= 0, (3)

where (f, g) is a Lagrangian bracket of the functions f and g defined as a characteristic
function of the contact vector field [Xf , Xg], i.e., [Xf , Xg] = X(f,g).

If the relation

rank

∥∥∥∥∥ ∂f/∂pt ∂f/∂px

∂g/∂pt ∂g/∂px

∥∥∥∥∥ = 2

is satisfied, then the functions f and g may be taken in the form f = −pt + a(t, x, u),
g = −px + b(t, x, u).

Let us say that the vector fields Xf and Xg generate the two-dimensional module
of partial symmetries of equation (1) if X

(k)
f and X

(k)
g are tangent to the intersection

E
(k)
f,g ∩ E∆.

3 Weak symmetries

One can treat the infinitesimal weak symmetries corresponding to the one-parameter
groups in the following way. Consider the contact vector field Xf , the function Γ(t, x, u, p) =
X

(k)
f (∆)(t, x, u, p), and the system W of differential equations

∆ = 0, Γ = 0, f = 0. (4)

Definition. The vector field Xf is an infinitesimal weak symmetry of equation (1) if
(i) Xf is a classical infinitesimal symmetry of system (4),
(ii) system (4) is compatible.
Since Γ = X

(k)
f (∆) and Xf (f) = fu · f , the criterion that Xf is tangent to W takes

the form

X(Γ)|W = 0. (5)

Theorem. Suppose that the vector field Xf is an infinitesimal weak symmetry of equation
(1) being neither classical nor partial symmetry of that equation and suppose that its
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characteristic function satisfies the relation rank ‖fpt , fpx‖ = 1. Suppose also that Xf -
invariant solutions generate at least one-parameter family of solutions. Then there exists
a two-dimensional module g of partial symmetries of equation (1) such that each Xf -
invariant solution is a g-invariant one, besides, the relation E

(k)
g ∩ E∆ = E

(k)
g is valid,

where Eg is a submanifold of g-invariant solutions given by the equations of the form (2).
For the proof see [9]. The theorem means that obtaining vector fields of the weak

symmetries is equivalent in general to searching two-dimensional modules of the partial
symmetries. The latter problem is essentially simpler than the first one as our calculations
show.

4 Weak symmetries of the nonlinear heat equation

It is interesting to consider the example of the infinitesimal weak symmetry which is ad-
mitted by a unique invariant solution and which does not thereby fall under the Theorem.
Consider the equation

ut = uxx + u2
x + u2 (6)

and its infinitesimal weak symmetry with the characteristic function f = −px + b(t, x),
where the function b(t, x) needs to be defined. The following formula is valid: Γ =
−bt +bxx +2bbx +2ub. Therefore, if the function b(t, x) is fixed, a unique invariant solution
u(t, x) is obtained from the equation Γ = 0:

u(t, x) = (bt − bxx − 2bbx) /2b. (7)

From the above calculations, we can draw a conclusion that system (3) in the case con-
sidered takes the form:

pt = bx + b2 + u2, px = b(t, x), u = (bt − bxx − 2bbx) /2b. (8)

The compatibility conditions for system (8) are evident:

∂/∂x ((bt − bxx − 2bbx) /2b) = b,

∂/∂t ((bt − bxx − 2 b bx) /2b) = bx + b2 + ((bt − bxx − 2 b bx) /2b)2 . (9)

Equations (9) admit separation of variables b(t, x) = φ(t) sinx with φ(t) satisfying the
equation

d/dt
((

φ̇ + φ
)

/2φ
)

=
((

φ̇ + φ
)

/2φ
)2

+ φ2. (10)

If the function φ(t) satisfies (10), then

u(t, x) =
(
φ̇ + φ

)/
2φ− φ cosx.

Galaktionov obtained this solution by applying directly the method of generalized sepa-
ration of variables in the form u(t, x) = θ(t)− φ(t) cosx to equation (6) in his article [10].
The wide class of exact solutions of nonlinear heat equations was constructed in [11].
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5 Explicit solutions of a family of nonlinear heat equations

Consider the problem of finding the two-dimensional module g = L(Xf , Xg) of the partial
symmetries with f = −pt + a(t, x, u), g = −px + b(t, x, u) for the family of nonlinear heat
equations

ut = (f(u)ux)x + g(u). (11)

The functions a(t, x, u), b(t, x, u) must satisfy the compatibility condition

ax + aub = bt + bua. (12)

Besides, in order for (11) and (2) to admit a one-parameter family of solutions, equation
(11) must be a differential consequence of (2) which implies the following relation:

a = k′(u) b2 + k(u) (bx + bu b) + q(u). (13)

If we insert the function a(t, x, u) given by (13) into equation (12), we obtain the equation

bt = k(u)
(
bxx + 2bbux + b2buu

)
+ k(u)′

(
3bbx + 2b2bu

)
+ k′′(u)b3 + bq′(u)− q(u)bu (14)

for the function b(t, x, u).
Equation (14) admits separation of variables b(t, x, u) = θ(t)h(u). For such solutions

equation (14) takes the form:

θ̇(t) = θ(t)3h(u)(k(u)h(u))′′ + θ(t)h(u)(q(u)/h(u))′

which yields the relations

h(u)(f(u)h(u))′′ = λ, h(u)(g(u)/h(u))′ = µ θ̇ = λ θ3 + µ θ (15)

with λ, µ constants. Given the function h(u), equations (15) can be solved for k(u) and
q(u):

k(u) =
(

u∫
dv

v∫
λ/h(w) dw + c1 u + c2

)
/h(u),

q(u) = h(u)
(

u∫
µ/h(v) dv + c3

)
,

(16)

where c1, c2, and c3 are arbitrary constants. For obtaining explicit solutions, one must
take the function h(u) so that one can explicitly solve the equation

u∫
d v

h(v)
= θ(t) x + φ(t)

arriving to the relation:

u(t, x) = F (θ(t) x + φ(t)). (17)
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In the last two relations, the function φ(t) satisfies the ODE obtained by substitution of
(17) into equation (11). Let us give one example of explicit solutions:

k(u) = 2 λ u4

3 + u(t, x) =

√
(x + l(t))et√

α − e2t
, (λ, µ) = (1, 1),

c1 u2 + c2 u l(t) = −c3

√
α − e2 t

et − 2 c3 − c1
2 arctan et√

α − e2 t
,

q(u) = µ u
2 + c3

2 u u(t, x) =

√
x + l(t)√
1 + α e2 t

, (λ, µ) = (1,−1),

l(t) = c3

√
1 + α e2 t − c1 + 2 c3

2 arctanh
√

1 + α e2 t,

u(t, x) =
√

x/
√

α − 2 t + 2 c3 t/3− (3 c1 + 2 α c3)/6,

(λ, µ) = (1, 0),
u(t, x) =

√
x et + l(t),

l(t) = −c3 + c1 e2 t/2, (λ, µ) = (0, 1),

(18)

It is clear that the class of equations considered is potentially infinite.
The second kind of solutions of equation (14) consists of solutions b(t, x, u) = θ(x) h(u)

with θ(x), k(u), q(u), and h(u) satisfying the following system of ODE:

h(u) (h(u) k(u))′′ = λ k(u), 3 h(u) k′(u) + 2 h′(u) k(u) = µk(u),

h(u) (q(u)/h(u))′ = ν k(u), θ′′(x) + µ θ′(x) θ(x) + λ θ3(x) + ν θ(x) = 0,
(19)

where λ, µ, and ν are constants. Presumably, the case λ = 0, µ = 0 is the simplest one.
Here we have the following particular solutions of system (19)

h(u) = u3, k(u) = u−2, q(u) = − 1
4 u

+ c1 u3, θ(x) = −b cos x,

where b and c1 are parameters, and the corresponding solutions of (11):

u(t, x) = 1/
√

l(t) + b sinx, l(t) = −
√

b2 + 4 c1tanh

√
b2 + 4 c1 (t − t0)

2
.
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