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Abstract

We present symmetry classification of the polywave equation 2lu = F (u). It is estab-
lished that the equation in question is invariant under the conformal group C(1, n)
iff F (u) = λeu, n + 1 = 2l or F (u) = λu(n+1+2l)/(n+1−2l), n + 1 6= 2l. Symmetry re-
duction for the biwave equation 22u = λuk is carried out. Some exact solutions are
obtained.

The nonlinear wave equation

2u = F (u) (1)

is known to describe a scalar spinless uncharged particle in the quantum field theory.
Symmetry properties of Eq.(1) were studied in [1, 2, 3] and wide classes of its exact
solutions with certain specific values of the function F (u) were obtained in [1, 2, 4, 5, 6].

It is suggested in [7] to describe different physical processes with the help of nonlinear
partial equations of high order. So we consider the generalized wave equation, namely, the
polywave equation

2lu = F (u). (2)

Here 2l = 2(2l−1), l ∈ N; 2 = ∂2

∂x2
0

− ∂2

∂x2
1

− . . .− ∂2

∂x2
n

is a d’Alembertian in the pse-

udo-Euclidean space R(1, n) with the metric tensor gµν = diag(1,−1, . . . ,−1), µ, ν = 0, n;
F (u) is an arbitrary smooth function and u = u(x) is a real function.

Symmetry of Eq.(2) when l is not positive integer is described in [1, 8].
Group properties of Eq.(2) are investigated in [1, 9, 10], where the conformal invariance

of the equation is ascertained.
We establish that the conformal group is the maximal invariance group of the equation

in question [11]. It occurs that the group properties of differential equation (2) are virtually
the same as those of standard wave equation (1).

Let us note that as the equation (2) is of high order and we consider it in a multi-
dimensional space (l, n are arbitrary positive integers), one cannot use existing symbolic
manipulation programs for studying its symmetry [12]. The maximal symmetry group of
Eq.(2) is constructed by means of the infinitesimal algorithm of S. Lie [7, 13].
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Results of symmetry classification of Eq.(2) are given in the following statements. The
case l = 1, n = 1 has been studied earlier (see [2]), that is why we consider the case
l + n > 2.

Lemma 1 The maximal invariance group of Eq.(2) with an arbitrary function F (u) is
the Poincaré group P (1, n) generated by the operators

Pµ =
∂

∂xµ
, Jµν = xµ ∂

∂xν
− xν ∂

∂xµ
, µ, ν = 0, n. (3)

Here and further summation over repeated indices from 0 to n is understood; xµ =
xνgµν , µ, ν = 0, n.

Theorem 1 All the equations of type (2) admitting a more extended invariance algebra
than the Poincaré algebra AP (1, n) are equivalent to one of the following:

1. 2lu = λ1u
k, λ1 6= 0, k 6= 0, 1; (4)

2. 2lu = λ2e
u, λ2 6= 0; (5)

3. 2lu = λ3u, λ3 6= 0; (6)
4. 2lu = 0. (7)

Here λ1, λ2, λ3 are arbitrary constants.

Theorem 2 The symmetry of the Eqs.(4)–(7) is described in the following way:

1. (a) The maximal invariance group of Eq.(4) when k 6= (n + 1 + 2l)/(n + 1 − 2l),
k 6= 0, 1 is the extended Poincaré group P̃ (1, n) generated by the operators (3)
and

D = xµ
∂

∂xµ
+

2l

1− k
u

∂

∂u
.

(b) The maximal invariance group of Eq.(4) when k = (n + 1 + 2l)/(n + 1 − 2l),
n + 1 6= 2l is the conformal group C(1, n) generated by the operators (3) and

D(1) = xµ
∂

∂xµ
+

2l − n− 1
2

u
∂

∂u
,

K(1)
µ = 2xµD(1) − (xνx

ν)
∂

∂xµ
.

(8)

2. (a) The maximal invariance group of Eq.(5) when n 6= 2l − 1 is the extended
Poincaré group P̃ (1, n) generated by the operators (3) and

D(2) = xµ
∂

∂xµ
− 2l

∂

∂u
.

(b) The maximal invariance group of Eq.(5) when n = 2l − 1 is the conformal
group C(1, n) generated by the operators (3) and

K(2)
µ = 2xµD(2) − (xνx

ν)
∂

∂xµ
.
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3. The maximal invariance group of Eq.(6) is generated by the operators (3) and

Q = h(x)
∂

∂u
, I = u

∂

∂u
,

where h(x) is an arbitrary solution of Eq.(6).

4. The maximal invariance group of Eq.(7) is generated by the operators (3), (8) and

Q = q(x)
∂

∂u
, I = u

∂

∂u
,

where q(x) is an arbitrary solution of Eq.(7).

Since proofs of Lemma 1 and Theorems 1,2 require very cumbersome computations,
we omit them.

An important consequence of the above theorems is the following statement.

Corollary Provided n + 1 = 2l, there exist two inequivalent representations of a Lie alge-
bra of the conformal group on the solution set of equation (7) [7, 1, 8]:

1. P
(1)
µ = Pµ = ∂xµ , J

(1)
µν = Jµν = xµ∂xν − xν∂xµ ,

D(1) = xµ∂xµ , K
(1)
µ = 2xµD(1) − (xνx

ν)∂xµ ;

2. P
(2)
µ = Pµ = ∂xµ , J

(2)
µν = Jµν = xµ∂xν − xν∂xµ ,

D(2) = xµ∂xµ + ∂u, K
(2)
µ = 2xµD(2) − (xνx

ν)∂xµ .

As follows from the foregoing statements, a set of equations of type (2) which are
invariant under the extended Poincaré group P̃ (1, n) is exhausted by equations (4), (5),
(7). Besides, the nonlinear equation (2) is invariant under the conformal group C(1, n) iff
it is equivalent to the following

1. 2lu = λ1u
n+1+2l
n+1−2l , n + 1 6= 2l;

2. 2lu = λ2e
u, n + 1 = 2l.

From our point of view it is of great interest to make use of symmetry properties of
PDE (4)–(7) in order to construct some exact solutions by analogy with what have been
made in [1, 7, 14] for the nonlinear wave equation. Here we consider the biwave equation
in the two-dimensional space R(1, 1):

22u = λuk, 2 = ∂2
x0
− ∂2

x1
(9)

which is invariant under the extended Poincaré group P̃ (1, 1).
Making use of inequivalent one–dimensional subalgebras of the conformal algebra

AC(1, 1) [6], one can obtain the following C(1, 1)-inequivalent ansatzes which reduce equa-
tion (9) to ordinary differential equations. For each case the reduced equations are given
as
1. u = (x0 − x1)

2
1−k ϕ(ω), ω = x0 + x1;
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1 + k

(1− k)2
ϕ(2) =

λ

32
ϕk;

2. u = (x0 + x1)
4

(1−k)(α+1) ϕ(ω), ω = (x0 − x1)(x0 + x1)
α−1
α+1 , α 6= −1;

(α− 1)2ϕ(4)ω2 + 2(α− 1)(α + 1)2
(

3k + 1
1− k

+ 2α

)
ωϕ(3) +

2
(

α2 − 4α + 3 +
6α− 10
1− k

+
8

(1− k)2

)
ϕ(2) =

λ

16
(α + 1)2ϕk;

3. u = exp
( 4

k−1
(x1 − x0)

)
ϕ(ω), ω = (x0 + x1 +

1
2
) exp

(
2(x1 − x0)

)
;

ϕ(4)ω2 +
5k − 1
k − 1

ϕ(3)ω +
4k2

(1− k)2
ϕ(2) =

λ

64
ϕk;

4. u = ϕ(ω), ω = x2
0 − x2

1;

ϕ(4)ω2 + 4ϕ(3)ω + 2ϕ(2) =
λ

16
ϕk;

5. u = ϕ(ω), ω = x1;

ϕ(4) = λϕk;

6. u = ϕ(ω), ω = x0 + x1;
λϕk = 0.

Finding some solutions of the reduced equations leads us to the following solutions of
Eq.(9):

u =

(
64
λ

(k + 1)2

(k − 1)4

) 1
k−1 (

(x0 + x1 + c1)(x0 − x1 + c2)
)− 2

k−1 , k 6= −1,

u =
(

8
λ

(k + 1)(k + 3)(3k + 1)
(k − 1)4

) 1
k−1

(x0 + c3)
4

1−k , k 6= −1,−3,−1
3
,

u =
(

8
λ

(k + 1)(k + 3)(3k + 1)
(k − 1)4

) 1
k−1

(x1 + c4)
4

1−k , k 6= −1,−3,−1
3
,

where c1, c2, c3, c4 are arbitrary constants.
Note that Eq.(1) has analogous solutions (see [1]).
It follows from Theorem 2 that Eq.(9) when k = −3 is invariant under the conformal

group C(1, 1). So using C(1, 1)–inequivalent ansatzes, one can carry out the symmetry
reduction of the equation

22u = λu−3. (10)

The corresponding results are presented below:
1. u = ϕ(ω), ω = x0 or ω = x1;

ϕ(4) = λϕ−3;
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2. u = ϕ(ω), ω = x2
0 − x2

1;

ϕ(4)ω2 + 4ϕ(3)ω + 2ϕ(2) = λ
16ϕ−3;

3. u = (x0 + x1)
1
2 ϕ(ω), ω = x0 − x1;

ϕ(2) = −λ
4ϕ−3;

4. u = (x0 + x1)
1

α+1 ϕ(ω), ω = (x0 − x1)(x0 + x1)
α−1
α+1 ;

ϕ(4)ω2 + 4ϕ(3)ω + (α− 2)(2α− 1)
(α− 1)2

ϕ(2) = λ
16

(α + 1)2

(α− 1)2
ϕ−3, α > 1;

5. u = exp(x0 − x1)ϕ(ω), ω = (x0 + x1 + 1
2) exp(−2(x0 − x1));

ϕ(4)ω2 + 4ϕ(3)ω + 9
4ϕ(2) = λ

64ϕ−3;

6. u = ((x0 − x1)2 + 1)
1
2 ϕ(ω), ω = x0 + x1;

ϕ(2) = λ
16ϕ−3;

7. u = ((x0 − x1)2 + 1)
1
2 ϕ(ω), ω = x0 + x1 + arctan(x0 − x1);

ϕ(4) + ϕ(2) = λ
16ϕ−3;

8. u = ((x0 − x1)2 + 1)
1
2 ϕ(ω), ω = x0 + x1 + 1

2 ln 1 + x0 − x1
1− x0 + x1

;

ϕ(4) − ϕ(2) = λ
16ϕ−3;

9. u = ((x0 − x1)2 + 1)
1
2 (x0 + x1)

1
2 ϕ(ω),

ω = ln(x0 + x1)− β arctan(x1 − x0);

4β2ϕ(4) + (4− β2)ϕ(2) − ϕ = λ
4ϕ−3, β > 0;

10. u = ((x0 − x1)2 + 1)
1
2 ((x0 + x1)2 + 1)

1
2 ϕ(ω),

ω = (γ − 1) arctan(x0 − x1) + (γ + 1) arctan(x0 + x1);

(γ2 − 1)2ϕ(4) + 2(γ2 + 1)ϕ(2) + ϕ = λ
16ϕ−3, 0 ≤ γ < 1.

Integrating the reduced equations, we can find a number of exact solutions of the
nonlinear biwave equation (10). Here we present some exact solutions of this equation
with use of the ansatzes 3 and 6:

1. u = ±λ
1
4

(
x2

0 − x2
1

)1/2
,

2. u = ± 1√
2

(
λ

c1

) 1
4

|(x0 − x1)2 − c1|1/2
(
x0 + x1

)1/2
, (11)

3. u = ±1
2

(
λ

c2

) 1
4 (

(x0 − x1)2 + 1
)1/2

|(x0 + x1)2 + c2|1/2,

where c1, c2 are arbitrary constants.
In conclusion let us note that we can obtain solutions (11) of Eq.(10) using the following

ansatz

u = ϕ1(ω1)ϕ2(ω2), ω1 = x0 + x1, ω2 = x0 − x1,
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that reduces equation (10) to the system of ordinary differential equations for unknown
functions ϕ1(ω1) and ϕ2(ω2), namely,

ϕ
(2)
1 =

c

4
ϕ−3

1 , ϕ
(2)
2 =

λ

4c
ϕ−3

2 ; (12)

where c is an arbitrary constant.
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