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Abstract

From the action principle, the quantum dynamical equation is obtained both relativis-
tically and gauge invariant, which is analogous to the Dirac equation and describes
behaviour of an arbitrary number of self-acting charged particles. It is noted that
solutions of this equation are indicative of the soliton nature of an electron and allow
to determine the internal energy, dimensions and geometric shape of the electron in
different quantum states. The theory proposed represents a synthesis of the standard
QED and ideas of the self-organization theory of physical systems.

1 Introduction

Development of an uncontradictory quantum model of an electron which would take into
account Coulomb self-action of the particle remains one of key problems of present-day
physics. Numerous attempts to work out such a model have failed. In our opinion, the
main reason consists in using the standard scheme of quantum mechanics whose framework
proved to be too narrow to describe the electron’s self-action in a self-consistent way.

One of the most bold ideas concerning physical nature of the electron belongs to
Schrodinger who believed that dimensions of the electron are the same as those of the
atom [1]. According to Schrodinger’s interpretation of quantum mechanics, the quantity
eh/J\Q is the density of spatial distribution of electron’s charge (e and 1) are a charge and
wave function of the particle, respectively).

An important stride towards elucidating the true physical nature of the electron was
made by Barut and his collaborators [2-5]. They managed to formulate and develop
quantum electrodynamics (QED) based entirely on the self-energy picture (the Self-Field
QED) without treating the second quantization of electromagnetic field. As was pointed
out in [3], the correct equation of motion for the radiating electron is not the Dirac or
Schrédinger equation for a bare electron, but an equation with an additional nonlinear
self-energy term. This viewpoint is reciprocated by many investigators, among which
are Fushchych and his collaborators who have been deeply involved in the search for the
nonlinear equation for the electron [6, 7].

In [8-11] new lines of the approach to the problem are proposed which change QED
into a theory of self-organization of the electrically charged matter. A mechanism of self-
organization consists in the back action of the Coulomb field created by the particle upon
the same particle and is described by the model of an open system with the wave functions
belonging to the indefinite metric space.
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Basic to the approach are the following physical ideas:

1. The electron is a quantum (an elementary excitation) of the charged matter field
localized in a bounded region of space and subject to Coulomb self-action. This
means that the abilities of the electron to produce Coulomb forces and Coulomb
self-action are the physical properties intrinsically inherent in the charged matter
and should be included from the very beginning in the definition of the particle.
Mathematically, from this it follows that the behaviour of the electron should be
governed by the nonlinear dynamical equation. Physically, the electron becomes a
self-organizing system, whose geometric shape and linear dimensions are deter-
mined in a self-consistent way from the solutions of a dynamical equation.

2. Since the electron is a clot of the charged matter producing the long-range Coulomb
forces in the surroundings, its environment becomes a medium which can have a
determining effect on the physical properties of the particle. Thus, the electron
turns to an open system inseparable from the surrounding medium. In this
sense, the whole universe takes part in the formation of the electron.

The aim of this article is to briefly outline the main results of the theory of a self-organizing
electron which represents the synthesis of the standard QED and theory of self-organization
in physical systems [12]. The foundation of the theory is the relativistically invariant action
which takes into account both the Coulomb self-action and interaction of charged particles
the transverse electromagnetic waves and is based on the model of open system. The
fundamental dynamical equation derived from the action principle [8,11] is a generalization
of the Dirac equation to the case of the self-organizing electron. The solutions to this
equation are indicative of the soliton nature of the electron and allow one to determine
the internal energy, dimensions and geometric shape of the particle in different quantum
states. It should be emphasized that the theory proposed fits the fundamental principles
of symmetry, gives insight into the problem of electron’s stability and does not lead to
divergence of the self-energy. The calculations of hydrogen atom dimensions, Balmer
spectrum and total angular momentum of the electron, which have been made to date,
are in agreement with experimental data.

Section 2 deals with the equation of motion for the self-acting electron in the non-
relativistic approximation. In Section 3 the relativistic generalization of the fundamental
dynamical equation is obtained. The main results of the paper are summarized in Con-
clusion.

2 Nonrelativistic equation for electron

In order to represent the Coulomb field produced by the electron as one of its physical
properties, we need to derive the dynamical equation which allows for the Coulomb self-
action. One of the hints as to how to do this can be obtained from Maxwell’s equations for
electric and magnetic fields. From them it follows that the total energy W of the Coulomb
field can be written as

1 o N BV o
W = 5/drl/dTg |71 — 72| lp(rl,t)p(rg,t), (1)



182 V. OLEINIK

p = p(7,t) being the charge density of the particles. Quantity (1) is the potential energy of
the Coulomb interaction between the charges including energy of each particle. Obviously,
when deriving the equation of motion for the self-acting electron from the action principle,
we have to include the additional term —W in the Lagrangian L of the electron field, i.e.,

L=Lo—-W (2)

where Lg is a Lagrangian for a free particle in the absence of the Coulomb field. Making
use of the nonrelativistic approximation,

(1t % o 1 = *\ (7
Lo = /dr <2x1f 00— 5 (VO )(V\IJ)) : 3)
and putting

p=el*W, (4)

we arrive from the action principle at the following equation for the wave function ¥ =
U (7, t) of the nonrelativistic electron:

o 1y
ov (1 v

i ( oV +U> : (5)
Ut — eQ/dfl 77w, ) = U (6)

An inspection shows, however, that equation (5) with the potential energy function (6)
has no solutions satisfying reasonable physical requirements. From the physical point of
view, this is due to the fact that Coulomb forces of repulsion are trying to tear the electron
to pieces. Formally, the potential energy function U (6) is a potential hump rather than a
potential well and so equation (5) cannot have solutions that would describe stable states
of the particle.

Thus, a negative result is obtained: we had a try, remaining within the framework
of the standard theoretical scheme, to take into account self-action of the electron and
arrived at the equation that has no reasonable physical solutions at all. This result seems
to mean that it is impossible to construct, without resorting to essentially new physical
ideas, a consistent quantum model of the electron.

As was noted in Introduction, the self-acting electron differs essentially from a bare
electron in its physical properties. The main difference is that the real electron, as distinct
from the bare one, produces the long-range Coulomb field in the surroundings and as a
result, cannot be treated as an isolated system.

To take into account that the real electron is inseparably linked with the surrounding
medium, we should first of all increase the number of dynamical variables describing it.
Here we adopt the simplest version of the theory in which the number of variables is
doubled as compared with the isolated system, namely, to each dynamical variable of the
bare electron, ¥, there correspond two dynamical variables which are denoted by ¥ and
V. These quantities are considered as components of the wave function describing the
quantum state of particle. One of them, say, ¥, corresponds in a sense to the particle
alone (to the bare electron) and the other, U, to the surrounding medium in which the
particle moves.
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The fundamental quadratic form defining the metric of the wave function space is
assumed to be given by

T+ T (7)

This quantity is used instead of the positively defined quadratic form W*W¥ underlying the
conventional formulation of quantum mechanics. As the electric charge density we take
the quantity

pla) = e(U*(2)¥(z) + ¥ (2)¥(2)), «=(t7) (8)
and as the Lagrangian of the free electron field we use the function (cf (3))
Lo — /df{;(@* oW+ U5, T) - % [(F5)(F9) + (T0)(FT)] } . )

The Lagrangian L of the nonrelativistic self-acting electron is given by (2) where W and
p are defined by (1) and (8), respectively. The action principle with the Lagrangian L (2)
gives rise to the following nonlinear equations of motion

. )
(z‘gt + 2% - U(x)) ( %Exi ) —0; (10)
Ule) = e/dﬁ 7 — 7|7, ), (11)

the quantity p(7,t) being given by (8).
Analysis shows that equations (10) have solutions describing the stationary states of
the electron at N = —1 where NV is the normalization constant

N= /df(\ff*\ll+\1/*\fl). (12)

As is seen from (7), the wave functions of the self-acting electron belong to the indefinite
metric space. The presence of two components of the nonrelativistic electron wave function
without regard for the spin variables, ¥ and 0, implies that the particle has an additional
degree of freedom. In the theory under consideration this degree of freedom is characterized
by the sign of the normalizing factor N (N = £1) which acts as a quantum number taking
into account the Coulomb self-action of the particle. It is of interest that the states of the
free electron and atomic one differ from one another by the sign of N: N = +1 for the
atomic electron and N = —1 for the free one [10, 13].

In connection with the quadratic form (7) it should be stressed that there is no way of
describing the electron as an open system without using the indefinite metric space. This
point is worthy of special attention because the quadratic form determines the properties
of the wave function space and thus the physical behaviour of the system. At first sight,
the quadratic form corresponding to the functional space of two variables, ¥ and \T/, should
be given by

U0 + U0 (13)

instead of (7). Accordingly, the Lagrangian L = L(¥, ¥) of the real electron should be
constructed in the standard manner:

L(, W) = L1(P) + Lo(T) + Lint(, 1) (14)
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where L;(¥) is the Lagrangian of the bare electron ( that is, of the electron isolated from
the medium), Ly(¥) is the Lagrangian of the medium created by the particle and estranged
from it, and L;,; the Lagrangian describing the interaction of the bare electron with the
medium, with the equalities

Lint(0,9) = Lipns(¥,0) =0

being fulfilled. If we now neglect the dynamical variables of the medium, that is, if we put
¥ = 0, we shall come to the Lagrangian of the bare electron

L(U,0) = Ly(¥) #0 (15)

being considered as zeroth approximation for the real particle. The other limiting case,
¥ = 0, leads to the Lagrangian of the medium alone

L(0, W) = Ly(T) £ 0. (16)

We should take into account, however, that the real electron is indissolubly related to the
surrounding medium. The two objects, the bare electron and the bare medium created by
it, do not exist in nature separately. Therefore, the use of the Lagrangian (14) under the
conditions (15) and (16), as a basis of the theory is intolerable. At the same time, using
the quadratic form (7) and accordingly the Lagrangian L = L(¥,¥) (2), where Lo, W
and p are defined by (9), (1) and (8), we allow for inseparability of the particle from the
medium. In particular, the equalities

L(V,0) = L(0,0) =0

are fulfilled which mean that the bare electron approximation has no physical meaning; in
either case, with no electron or with no medium, we have no physical system.

3 Relativistic generalization

Let’s introduce some designations which are necessary for deriving the relativistic funda-
mental equatlon of motion. As is known, any vector ﬁeld say, E= E(F) can be split into
potential (EH) and vortex (E ) components, E = EH + E |, which are defined by

V X EH = 0 YEEH 7'5 0 (Ol“ = 0),

17
Analogously, any 4-vector field A* = (AY, /_f) can be represented as a sum of potential
(Aﬁ ) and vortex (AY) components, A" = Aﬁ + A, with

Al = (A 4)), A =(0,A4)). (18)

=
Splitting the vector fields entering into Maxwell’s equations for the electric (E) and mag-
netic (B) fields into the vortex and potential components, we arrive at the two independent
subsets of equations:

0B = -V x EL,

0
2 ! 19
oE | = VxB-— 47er, 0 (19)
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and
ﬁE_“H = 47Tp, 8tE_:H = —471'5]‘, 6 X E|| =0. (20)

Each subset is seen from (19) and (20) to involve merely either the vortex components or
the potential ones. These subsets can also be represented in the 4-vector form:

0, Fh = —4mils FL +OFFR + " Fyt =0, (A=, 1) (21)

where 9, = 8 > =(0,V); 2¥=(t7), (r=0,1,2,3); Fi"” and .717” are the vortex and
potential components of the field-strength tensor F#* defined by

0 —Ei. —Eiy —Ei. 0 Ll —Ejy B
E 0 -B B E 0 0 0
w lx z Y . (ol llz
F1 E,, B 0 B, |7l Ey, 0 0 o |
E.. -B, B 0 B, 0 0 0

J! (z) and jllr(x) are the components of the 4-current density j#(z) = (p(x), j(x)). It should
be pointed out that the vortex (A/) and potential (Aﬁ ) components of the 4-vector A
each taken separately are not 4-vectors. Analogously, the quantities /" and .7-"” do
not behave like 4-tensors. Nevertheless, one can easily be convinced of form-invariance of
Maxwell’s equations (21) under Lorentz transformations.

Since the potential component of the electric field, E||, is not an independent degree
of freedom of the electromagnetic field, we include it in the definition of the elecrically
charged matter to obtain the self-acting field. The vortex electromagnetic field will be
treated on the same grounds as the charged matter field, using the indefinite metric space.
To each dynamical variable we shall put into correspondence two variables; for one of
them the old designation will be retained (E , Bor FI”') and the other will be labelled

by the sign ”widetilde” (E 1, Bor fjf”) Maxwell’s equations for the additional variables
are supposed to have the usual form analogous to (21).

The action of the whole system which consists of n electrically charged fields described
by ¥ and Uy, (k =1,2,...,n) and of the vortex electromagnetic fields represented by
FH" and ff’ can be written as

S = SH + 51+ Sint; (23)
S| = /d4 (wk < d mk> Uy, + 0y, (; P —mk> \T/k> —
§/d4:r1/d4$2 3((x1 = 22)%) Jju(ar) jff (2);
S = _7/d4az ]?ﬁy(x)}luv(x);
St = = [ d' juu(@) A} @)
where S| is the action of the self-acting charged fields, ¥ and W), are the wave function

components for a particle of mass my and electric charge e (k = 1,2,...,n); S| is the
action of the vortex electromagnetic fields; S;,; describes interaction of charged particles
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with the electromagnetic fields; jﬁL and j/ are the potential and vortex components of the
4-current density

n

P@) = $ el (@) + Tl (o)
= (p(@), @)
.?Efy and F|" are vortex components of the field-strength tensors Fr(z) and FH (x);
Fr(z) = OMA(x) — " AMz); A= AL+ A);
F(x) = oMAY(z) - 0" A (x); A= AL+ Ay
Afw) = Aa) = [ dtor 8@ - %) g (@0):

Ai@) = = [t 8l — ) 0 Ft ) (25)

(24)
(z
(x

Ai@) =~ [t sl — ) 0Pt )
M) = o (W) + B@);

d = 9,7, v are Dirac’s matrices.
The action principle §.5 = 0 gives rise to the fundamental dynamical equations for the
charged particles (k= 1,2,...,n)

(i0 — exA(w) — my.) ( %’;Eg ) =0 (26)

and to Maxwell’s equations
OHF = 9,FN = —Arjl,
(27)
TV AT+ TN = OF I F+ 0 FM =0,
By their appearance the equations of motion (26) coincide with the Dirac equation for
a charged particle in an external field described by a 4-potential A* = Aﬂ‘ + A" . However,
in distinction to Dirac’s equation, they are nonlinear and nonlocal, with the nonlocality
being of the space and time character. The quantities A“‘ and A/ entering into (26) differ

from each other by their physical nature: the first describes the Coulomb field and is
expressed in terms of the wave functions of particles, and the second describes the vortex

electromagnetic fields and is uniquely determined by the field variables E L, EL, B', B.
These two considerably different quantities are combined in our theory to form a single
4-vector.

Excluding the vortex components F 1" and F1" of the field-strength tensors from the
general expression (23) for the action with the help of Maxwell’s equations (27), we arrive

at
S = 3 d4m[\i (ig—m>\ll +\IJ< g—m)@]—
;/d%l/d‘*@ 5((21 — 22)2) ju(21)7%(22). (28)

M| .
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If we put Uy, = ¥}, in (24) and (28), we shall come to the Self-Field QED by Barut [2-5].
The action principle 65 = 0 gives the following equations of motion:

(i0 — exA(w) — my.) < %’;8 ) =0, (29)

(@) = [ a3~ 2?5 (@),

Using expression (28) one can derive in the usual manner the energy-momentum tensor
TH for the system of n self-acting charged fields (g, =0 at p# v, goo=—gii =1, i =
1,2,3)

1
TH =" + M + 59“”]'@14“ — AljY (30)
where
;o n — — _ — ~
" = %Z (\Pk o* ’YV\I/k + \I’k o ’}/V\I/k> —
k=1
|z (i = (i A ~ 1
g {Z [\I’k (2 0 —mk> U, + Wy (2 9 _mk> ‘I’k] - 2jaAa},
k=1
o — L (puopr _Lowpesp (31)
T T o™y o |-

The components of the 4-tensor F*¥ = gt AY — 0¥ A* satisfying the equality
Oy M = —4mjt (32)

can be represented in the form FH = F|‘|‘ Y+ FM with F|’|‘ Y describing the Coulomb
field and F" the vortex fields. It should be stressed that in the model under study the
field described by F*¥ is not a degree of freedom independent of charged particles. For
this reason the equalities (32) are identities, not equations. The 4-tensor 6* (31) is an
energy-momentum tensor for the field produced by the charged matter. It satisfies the

equation
0,0 = —F*,

with F'* = FF%j, being the force-density 4-vector which describes the back action of the
fields produced by the charged particles on the same particles.

From the differential conservation law 8,7 = 0, the integral law of conservation
results as
/df' TH0 = PH = const, (33)

where P* is an energy-momentum 4-vector. It should be noted here that the quantity

[ o0 =70
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is not a 4-vector. This means that it is impossible in principle to define correctly the
notions of energy and momentum of both the particle free of its own Coulomb and vortex
fields and the fields being produced by the particle and separated from it. It is only the
particle being thought of as an elementary excitation of the charged matter together with
the fields included in its definition that is a well-defined physical object.

The quantum theory of a self-acting electron given above differs qualitatevely from
the theory of electromagnetic mass of an electron (the Abraham-Lorentz model). In the
latter the stability of the electron is achieved by introducing special attractive forces being
produced by a hypothetical matter field and compensating for the Coulomb repulsive
forces. In the present theory, contrastingly, there are no additional forces and no material
sources creating them. It is the electrically charged matter that is the only source of both
the Coulomb forces and ones compensating them and holding the particle stable. The
stability of the electron is due to the Coulomb self-action and is achieved by the use of a
functional space with the indefinite metric.

As can be seen from the model of the electron discussed above, the Coulomb field
plays a leading part in formation of the electron being considered as a clot of the charged
matter localized in some region of space. It is evident, besides, that the Coulomb self-
action described by the last term in the right-hand side of (28) cannot be considered as
a small perturbation. Indeed, the behaviour of the electron wave function considerably
depends on self-action: when self-action is lacking (i.e., at A = 0 in (29)), the electron
wave function is a plane wave, whereas at A # 0 the wave function describes a soliton
[10,13], the state of a particle localized in space.

4 Conclusion

The solutions to the nonlinear equations (10) and (26) in the absence of vortex electro-
magnetic field were obtained and investigated in detail in [8-11,13]. Relaying on these
solutions, we can draw the following conclusions:

1. The self-acting electron is a soliton which can be in different quantum states char-
acterized by internal energy, dimensions and geometric shape.

2. The self-acting electron has a discrete internal energy spectrum, the size and geo-
metric shape of the particle depending upon the value of its internal energy.

3. The atom consists of one or several electronic solitons interacting with the nuclear
soliton.

4. Discreteness of the internal energy spectrum of the nuclear soliton is responsible for
appearance of a band structure in the energy spectrum of a hydrogen atom, Balmer’s
spectrum being one of energy bands.

5. Discreteness of the internal energy spectrum of the electron and existence of energy
bands in the atom offer great possibilities of using quantum transitions between in-
ternal energy levels of a particle, including the levels inside bands, for controlling
intra-electron processes and producing new materials, electronic devices and tech-
nologies.
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Note that a self-acting electron cannot decay into fragments under influence of a perturba-
tion. The particle can merely go from one quantum state to the other with the result that
its charge distribution in space may vary considerably in size and shape. The immediate
task of theoretical research is to obtain and investigate the solutions of the fundamental
equations corresponding to both stationary and nonstationary states of the self-acting
electron and to evaluate the intensity of quantum transitions between the internal energy
levels.
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