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Abstract

On the basis of a subgroup structure of the Poincaré group P(1,3) the ansatzes
which reduce the Monge-Ampere equation to differential equations with fewer inde-
pendent variables have been constructed. The corresponding symmetry reduction has
been done. By means of the solutions of the reduced equations some classes of exact
solutions of the investigated equation have been found.

The Monge-Ampere equation in different-dimensional spaces is widely applicable [1-5]. In
[6, 7] the symmetry properties of the multidimensional Monge-Ampere equation have been
studied. In the same papers, multiparameter families of exact solutions of the equation
have been constructed, by means of special ansatzes.

Let us consider the equation:

det (uu) = 0, (1)

2

where u=u(x), © = (20, 1, 22) € R3, wu = axigx,,’ w,v=0,1,2.

The invariance group [6, 7] of the equation (1) includes the Poincaré group P(1,3) as
a subgroup. Using the invariants [8, 9] of the subgroups of the group P(1,3), we construct
ansatzes which reduce the equation (1) to differential equations with fewer independent
variables. The corresponding symmetry reduction has been done. Using the solutions of
the reduced equations, we have found some classes of exact solutions of the Monge-Ampere
equation.

1. Below we present ansatzes which reduce the equation (1) to ordinary differential
equation (ODE), and we list the ODEs obtained as well as some exact solutions of the

Monge-Ampere equation.

1. w?=p?(w) — 23, w= (x%—x%)lﬂ, ¢" =0,

2 1/2
u:<(01 (x%—:c%)l/Q—i-Cg) —x%) .
2 u=pWw), w= (3 —2f -2}, " =0, u=0C(af~a}-23)"" + .
1/2
3. ul = ¢Aw) —at— 23, w=u10, ¢" =0, u=((Crmo+ o)’ — 2} —a3) "
To+x1 — 1
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(W — 2w + w?) " — 2 (203 — 3w? + w) ¢’ +2 (Bw? — 3w+ 1) p =0,

ro+x1—1 1/2
u = (01‘0_’_;1 (m%—x%—x%) +(1’0+l’1) <C1($0+1}1)2 +CQ($0+$1)—01—02)) .

The ansatzes (1)—(4) reduce the equation (1) to the linear ODEs.
5. u? = —pA(w) +af — 2% — a2}, w=mo+m, (PP +¢7) = 2o+ ? =0,

1/2 9 1/2
u:<l‘%—$%—$%—<cl(l‘o+$1)/ +C2(l'0+l‘1))) .

6. u? = —p*(w)+ 2t — 23, w=1x2+aln(zg+z1), P"*—ap’P'o— ag’® =0,

u= (23 — 2% — C(x0 + z1) exp(gl?g/a))l/2 :

2. Next we present ansatzes which reduce the equation (1) to two-dimensional partial
differential equations (PDE) and we list the PDEs obtained.

1/2
1. u=¢w,w), wi =mxg, we= (x%—l—azg) / :

2
P11 P12 0% o
det o =0, detyp= =2 % =12
7 L R i w;idw; J
3. u= SO(WLWQ) + xa, w1 =T+ T, Wy = (:Eg _ IL'% _ w%)l/Q,
dp .
W%WQ detso - W%SOQQDll - W%QOQCPQQ — 2&)1&}2@2@12 = 0’ i = 87:)0.’ 1 = 17 2.
1
1 1/2

4. u= @(wlvwz), w1 = T -+ arcsin

Vod a3
wipz det o — i1 = 0.

5. u= p(w,ws), w1 =z2+aln(ze+z1), wy= (28— x%)lp'
wa(ap1 + waps) det @ — ap1papr1 = 0.

6. u=¢p(w,ws), w =2+ % (zo + xl)z, we =xo — o1 + (o + 21)x2 + % (zo + m1)3;

p1det o — 203022 = 0.

T
7. u:(p(wl,wg)—a-arcsinﬁ, w1 = Zg, W2 = (m%“‘m%)l/Q?
]+ 23
w3 det o — a?p1; = 0.
1 T2 1/2
8 u=———0(w,ws) — ——————, W1 =2 +:c7w:x2—x2—a:2 )
5($0+x1)¢( 1,ws) Sy Tt @ (2§ — 21 — z3)

2w3 P det  — wip3p1l — (W33 4 2wiwap1Pa — 2wapps — w3) Past
©2 (wiwap3 — 20pa + 2wip1pg —ws) =0, € = £1.

The ansatzes (1)—(8) can be written in the form:

h(u) = f(x) - p(w1, w2) + g(z),
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where h(u), f(z), g(x) are given functions, ¢(wi, wy) is an unknown function. The new

variables w; = wj(x), wa = wo(x) are invariants of subgroups of the group P(1,3).
9. arcsin -2 = (w1, ws) —aln(zg + 1), w1 = (23 + u2)1/2, wo = (2% — 95%)1/2;
w1

1 a? a , a’ 3a a
—p2— —p1— det o + | 193 + —501 — —w102 + —— | Y211+
w1 w2 wiw?2 Wy w9 wWiwy

3 2a 2 a 3 a
P1P2 — —5—P1 T —mP1P2 — — Y]+ —5— | 22t
wiwg w1 w2 w

1 1W2
2a o 9 1 2a
200 —¥1 —Pip2 — 392+ — Y12+

a 3 3a 1 2, 2a a? _ 0
P2 w%()ol w:l),w2902 wi;(PQ w%wggpl w%w% = Y.

10. arcsin 22 = o(wi,ws) —e(xg — x1), w1 =z0+ 21, wa = (T2 + u2)1/2;
p2 det ;2* wap11 = 0.
The ansatzes (9) and (10) can be written in the form:
hw,z) = f(z) - p(w) + g(x),

where h(w,z), f(z), g(z) are given functions, ¢(w) is an unknown function.
w = (w1(z,u), wa(z,u)) are invariants of subgroups of the group P(1,3).
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