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Abstract

We consider the variational symmetry from the viewpoint of the non-integrability cri-
terion towards dynamical systems. That variational symmetry can reduce complexity
in determining non-integrability of general dynamical systems is illustrated here by a
new non-integrability result about Hamiltonian systems with many degrees of freedom.

1 Variational Symmetry in the Non-integrability
Criterion

Monodromy matrices with the eigenvalues
(
σ1, σ

−1
1 , σ2, σ

−1
2 , · · · , σn−1, σ

−1
n−1

)
for Hamilto-

nian systems with n degrees of freedom are called non-resonant when they cannot satisfy
the following relation for all integers mi (except for the trivial case m1 = m2 = · · · =
mn−1 = 0):

σm1
1 σm2

2 · · ·σmn−1

n−1 = 1.

One of the crucial conditions to apply Ziglin’s test of non-integrability is that the mon-
odromy matrix of a normal variational equation for a particular solution must be non-
resonant [6, 1]. It is clear that this non-resonance condition does not include the degen-
erate case and also does not include the case of a power root of unity for eigenvalues.
However, there is a case that a particular solution

Γ : (q,p) =
(
C1φ(t), · · · , Cnφ(t), C1φ̇(t), · · · , Cnφ̇(t)

)
is invariant under an exchange operator (i, j) for canonical variables {qi, pi}, where

(i, j)Q(· · · , qi, · · · , qj , · · · , pi, · · · , pj , · · ·) = Q(· · · , qj , · · · , qi, · · · , pj , · · · , pi, · · ·).

In this case, the system naturally admits the variational symmetry and consequently
the eigenvalues of monodromy matrices of the variational equations along this symmet-
ric solutions must be degenerate. Recently, the author gave many examples of Hamil-
tonian dynamical systems which have no particular solution whose monodromy matrices
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are not degenerate in Ref. [3]. There, the author gave a new criterion using a weaker
sufficient condition than the non-resonance condition of Ziglin and Yoshida to prove the
non-integrability. In the above criterion, we use the following condition for symplectic
monodromy matrices. We call a symplectic monodromy matrix non-resonantly-degenerate
[3] if eigenvalues may be degenerate but all the different representations of eigenvalues
satisfy the non-resonance condition. In other words,

Definition 1.1 We call a monodromy matrix non-resonantly-degenerate [3] when the
eigenvalues (σ1, · · · , σn−1) degenerate into d(≤ n− 1) groups as follows:

σ′1 = σ1 = · · · = σi1

σ′2 = σi1+1 = · · · = σi2

· · · · · · · · ·
σ′d = σid−1+1 = · · · = σn−1

1 ≤ i1 < i2 < id−1 < n− 1 d ≤ n− 1

but the representatives (σ′1, · · · , σ′d) satisfy the non-resonance condition:

σ′m1
1 σ′m2

2 · · ·σ′md
d = 1

⇒ (m1,m2, · · · ,md) = (0, 0, · · · , 0)

for all integers mi.

When d = n−1, the non-resonantly-degenerate condition is nothing but the non-resonance
condition. The main purpose of the present paper is to clarify the relationship between
variational symmetry and non-resonantly-degenerate monodromy in the non-integrability
criterion, because in the series of recent papers about the non-integrability criterion in-
cluding the author’s paper [3], this relation has been obscure.

1.1 Main Theorem

Here, we have the following theorem which connects the variational symmetry and non-
resonantly-degenerate monodromy in the non-integrability criterion:

Theorem 1 Consider the following symmetric Hamiltonian systems of n degrees of free-
dom with a homogeneous polynomial potential function whose degree L is not 0, 2, or −2:

Hn =
1
2

∑
i=1,n

p2
i + V (q1, q2, · · · , qn),

where

(i, j)Hn = Hn for i 6= j.

Assume that the system has an additional global analytic integral Φ(q, p) besides the Hamil-
tonian itself

(i, j)Γ = Γ.

If there exist two different non-resonantly-degenerate matrices

m1 = diag [m1(λ1), · · · ,m1(λn−1)]
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and

m2 = diag [m2(λ1), · · · ,m2(λn−1)]

in the monodromy group for a particular solution

Γ : qi = Ciφ(t), pi = Ci
˙φ(t)

( ∏
i=1,n

|Ci| 6= 0
)
,

which admits a symmetry

(i, j)Γ = Γ,

then it is necessary that m1(λi) commute with m2(λi) for some i.

1.2 Proof of Theorem

For Hamiltonian systems with n degrees of freedom, with a homogeneous potential function
V (q) of degree L,

Hn =
1
2
p 2 + V (q ) ,

we can always get a straight-line solution as follows:

z(t) = (q = Cφ (t) ,p = Cφ̇ (t)), (1.1)

where

d2

dt2
φ(t) + φ(t)L−1 = 0

and

C =
∂V (C)

∂C
.

If we consider a slight perturbation around the particular solution (1.1) such as

q′ = q + ξ, p′ = p + η,

we obtain the following linear variational equation:

dξ

dt
= η,

dη

dt
= −φ(t)L−2VCCξ (1.2)

where ξ = δq,η = δp and VCC is the symmetric Hessian matrix of V (C). This system is
again a Hamiltonian system with a time-dependent Hamiltonian

H(t) =
1
2

< η,η > +φ(t)L−2 < ξ,VCCξ > .

Using an orthogonal transformation

ξ = Oξ′, η = Oη′
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with O being an orthogonal matrix, the linear variational equation (1.2) can be rewritten
in the diagonalized form:

dξ′

dt
= η′,

dη′

dt
= −φ(t)L−2diag (λ1, · · · , λn) ξ′,

where λ1, · · ·λn are the eigenvalues of VCC and λn = L−1. Since the variational equation
corresponded to the last eigenvalue λn has an integral

η · p + ξ · Vq,

we can reduce the (2n−1)-dimensional variational equations into the (2n−2)-dimensional
vector form of variational equations:

dξ′

dt
= η′,

dη′

dt
= −φ(t)L−2diag (λ1, · · · , λn−1) ξ′ (1.3)

where ξ′ = (ξ′1, · · · , ξ′n−1) and η′ = (η′1, · · · , η′n−1). These decoupled vector equations (1.3)
are called NVE (normal variational equations), and it is known by Whittaker’s theorem
that these normal variational equations have also the symplectic property. Assume that
there exists an additional holomorphic integral Φ(q, p) in a connected neighborhood of
the phase curve Γ = {z(t)} where t runs on a connected Riemann surface X making z(t)
single-valued. We expand Φ as

Φ(z + ζ) = Φ0(z) +
∞∑

m=1

Φm(ζ, t), (1.4)

where Φm is a homogeneous polynomial in ζ = (ξ1, · · · , ξn−1, η1, · · · , ηn−1). Each homoge-
neous term of the series in Eq. (1.4) is easily checked to be an integral invariant of the
normal variational equation (1.3). There is a possibility that Φ1 · · ·Φm−1 vanish along the
curve Γ. However, it is known that there is a non-zero homogeneous form of the series
and we define the first non-zero homogeneous term Φm as I∗(ξ′, η′, t) which is clearly an
integral of the normal variational equation.

Along the closed loop γ ∈ Γ on the Riemann surface w = φ(t) with period T , a
symplectic monodromy mapping (an element of the monodromy group) can be naturally
defined. Then an integral I∗(ξ′, η′, t) of NVE must be invariant under the action of the
monodromy matrix m(γ(T )), because I∗(ξ′, η′, t) itself depends on t only through φ(t)
and φ̇(t) and φ(0) = φ(T ) and φ̇(0) = φ̇(T ). This means that this polynomial function I∗

with ξ′1, · · · , ξ′n−1, η
′
1, · · · , η′n−1 being standing for the arguments of I ∗ is invariant under

the symplectic monodromy matrix m. We now assume that there exists a non-resonantly-
degenerate monodromy matrix m1. The monodromy matrix m1 can be expressed as a
pure diagonal matrix in a proper basis as

m1 = diag(σ1, σ
−1
1 , · · · , σn−1, σ

−1
n−1),

while the invariant polynomial I∗(ξ, η, t) is written in the form

In−1(u1, · · · , un−1, v1, · · · , vn−1) =
∑

C
k1,···,kn−1

j1,···,jn−1
uj1

1 vk1
1 · · ·ujn−1

n−1 v
kn−1

n−1

where
∑

i ji =
∑

i ki = l and the coefficients C
k1,···,kn−1

j1,···,jn−1
are holomorphic functions of t ∈ X.
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From the invariance property of In−1 under the monodromy action m1,

I ′n−1 =
∑

C
k1,···,kn−1

j1,···,jn−1
σj1−k1

1 · · ·σjn−1−kn−1

n−1 uj1
1 vk1

1 · · ·ujn−1

n−1 v
kn−1

n−1 = In−1,

a further restriction must be obeyed:

C
k1,···,kn−1

j1,···,jn−1
= 0 unless

i1∑
i=1

ji =
i1∑

i=1

ki, · · · ,
n−1∑

i=id−1+1

ji =
n−1∑

i=id−1+1

ki, (1.5)

where d is the number of representative eigenvalues. Moreover, since this degeneracy
(σi = σj) of the eigenvalues of the monodromy matrix comes from the degeneracy of the
eigenvalues (λi = λj) of the Hessian matrix VCC along the phase curve Γ which has a
variational symmetry

(i, j)Γ = Γ,

NVE (1.3) is invariant under the following exchange of variables:

(i, j)NVE = NVE.

Since the Hamiltonian is assumed to be invariant under the change of variables (i, j), we
can always have a symmetric integral

(i, j)Φ̃ = Φ̃

from the existence of an integral Φ. We have the following relations in the series

(i, j)Φ̃(z + ζ) = (i, j)Φ̃(z) +
∞∑

m=1

(i, j)Φ̃m(ζ, t) = Φ̃(z) +
∞∑

m=1

Φ̃m(ζ, t).

Thus, it is concluded that each homogeneous term Φ̃m must be symmetric:

(i, j)Φ̃m = Φ̃m.

Thus, an integral Ĩ of NVE is also symmetric under the (i, j):

(i, j)Ĩ = Ĩ .

Because the normal variational equations in Eq. (1.3) happens to be separated from
the homogeneous form of the Hamiltonian, any monodromy matrix m2 ≡ m other than
m1 can be expressed in the block diagonal form as

m2 = m = diag[m(λ′1),m(λ′1), · · · ,m(λ′2), · · · ,m(λ′d)],

where the eigenvalues of the Hessian VCC are regrouped according to their degeneracy:

λ′1 = λ1 = · · · = λi1

λ′2 = λi1+1 = · · · = λi2

· · ·
λ′d = λid−1+1 = · · · = λn−1.

(1.6)
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With the use of condition (1.5), Ĩ can be interpreted as:

Ĩ =
∑
Cr

Ĩ1(Cr)Ĩ2(Cr) · · · Ĩd(Cr)

where Cr runs over the allowable configurations of j1, · · · , jn−1, k1, · · · , kn−1 satisfying
condition (1.5) and each Ĩl(Cr)(1 ≤ l ≤ d) is a homogeneous polynomial in uil−1+1, · · · ,
uil , vil−1+1, · · · , vil .

Clearly, each m(Ĩj(C)) must also be homogeneous; otherwise m(Ĩ) does not have a
homogeneous form. Using the regrouping property of eigenvalues (1.6), we can consider
the following further-reduced variational equations:

dξ′′

dt
= η′′,

dη′′

dt
= −φ(t)L−2diag

(
λ′1, · · · , λ′d

)
ξ′′

where ξ′′ = (ξ′′1 , · · · , ξ′′d), η′′ = (η′′1 , · · · , η′′d), and

ξ′′1 = ξ′1 = · · · = ξ′i1 , η
′′
1 = η′1 = · · · = η′i1

ξ′′2 = ξ′i1+1 = · · · = ξ′i2η
′′
2 = η′i1+1 = · · · = η′i2

· · ·
ξ′′d = ξ′id−1+1 = · · · = ξ′n−1, η

′′
d = η′id−1+1 = · · · = η′n−1.

For this d dimensional normal variational equations reduced from the original n−1 dimen-
sional normal variational equations, the original non-resonantly-degenerate monodromy
matrix of the n − 1 dimensional variational equations corresponds to the non-resonant
monodromy matrix of the d dimensional normal variational equations. Let us consider the
phase manifold M ′ ∈ M as

M ′ =
{
z ∈ M |(l1,m1)z 6= z, 1 ≤ l1 < m1 ≤ i1, · · · ,

(ld,md)z 6= z, id−1 + 1 ≤ ld < md ≤ n− 1
}
.

According to the variational symmetry, we can consider the symmetry group G. Then the
projection M → M ′/G ≡ M̂ corresponds to the above reduction about the monodromy,
and, furthermore, because it is known [6] that the existence of an additional analytic and
functionally independent integral on M induces the existence of an additional analytic
and functionally independent integral on M̂ , we can use the Ziglin-Yoshida analysis using
a non-resonant monodromy matrix concerning the normal variational equations reduced
by the variational symmetry for a particular solution on M̂ [6, 5]. Thus, the conclusion
of the present theorem about the commuting property of block monodromy matrices as
a necessary condition of the existence of an additional integral follows by the standard
argument [6, 5, 4].

2 Non-integrability Results

2.1 Non-resonantly Degenerate and Non-commuting Monodromy

The main theorem shows that the non-existence of additional analytic integrals besides the
Hamiltonian itself can be proved if the monodromy matrices associated with a particular
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solution are checked to be non-resonantly degenerate and non-commuting. By changing
the variable as

z = (φ(t))L,

the normal variational equation NVE (1.3)

d2ξj

dt2
+ λjφ(t)L−2ξj = 0 (2.1)

becomes the Gauss hypergeometric equation [5]:

z(1− z)
d2ξj

dz2
+
[(

1− 1
L

)
−
(

3
2
− 1

L

)
z

]
dξj

dz
+

λj

2L
ξj = 0.

The two fundamental monodromy matrices M(γ0),M(γ1) for the Gauss hypergeometric
equations can be expressed as follows:

M(γ0) =

(
1 e−2πib − e−2πic

0 e−2πic

)
,

M(γ1) =

(
e2πi(c−a−b) 0

1− e2πi(c−a) 1

)
,

(2.2)

where

a + b =
1
2
− 1

L
, ab = − λj

2L
, c = 1− 1

L
.

Monodromy matrices m of NVE (2.1) can be generated by the above matrices M(γ0),
M(γ1) as follows:

m = M(γ0)i1M(γ1)i2M(γ0)i3 · · ·
where ik are integers. We can obtain the monodromy matrices

m1 = M(γ1)M(γ0)M(γ1)M(γ0)−1

m2 = M(γ0)−1M(γ1)M(γ0)M(γ1).

Their traces are given by

Tr(m1,2(λi)) = 2cos
(

2π

L

)
+ 4cos2

[
(

π

2L
)
√

[(L− 2)2 + 8Lλi]
]
.

It is known from the explicit expression of the traces that if λ ≡ λi(1 ≤ i ≤ n − 1) is in
the following region [5]:

SL =
{
λ < 0, 1 < λ < L− 1, L + 2 < λ < 3L− 2,

· · · j(j − 1)L/2 + j < λ < j(j + 1)L/2− j, · · ·
}

,
(2.3)

where L is the degree of a potential function and L ≥ 3, then m1(λi) and m2(λi) do not
commute each other and both of m1(λi),m2(λi) are non-resonant. This means that the
eigenvalues of

m1 = diag[m1(λ1), · · · ,m1(λn−1)] and
m2 = diag[m2(λ1), · · · ,m2(λn−1)]

satisfy the non-resonantly degenerate condition proposed here to prove non-integrability
because of their degeneracy

λ = λ1 = λ2 = · · · = λn−1.
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2.2 Examples

We consider the following Hamiltonian systems

Hα =
∑

i=1,n

(
1
2
p2

i + q4
i ) + α

<n>∑
<i,j>

q2
i q

2
j (2.4)

with a real parameter α. If α = 0, this system corresponds to separable systems which is
trivially complete integrable. If α = 2, then we can rewrite the above Hamiltonian as

Hα=2 =
∑

i=1,n

1
2
p2

i + (q2
1 + · · ·+ q2

n)2.

Thus, the system happens to have a centrifugal potential function and the Hamiltonian
Hα=2 commutes with angular momenta:

{Hα=2, piqj − pjqi} = 0

because of the rotational symmetry. How about the integrability of the case with 0 < α <
2? In the case of two degrees of freedom, Yoshida obtained that the relevant systems are
non-integrable except for α = 0, α = 2, and α = 6 [5]. In the case of the systems (2.4)
with three or more degrees of freedom, we obtain here the following theorem.

Theorem 2.1 For the case of 0 < α < 2, Hamiltonian systems Hα with three or more
degrees of freedom cannot have additional analytic integrals other than the Hamiltonian
itself.

We consider the particular solutions of

Γ : qi = Cφ(t) for 1 ≤ i ≤ n,

where

d2

dt2
φ(t) + φ(t)3 = 0.

Thus, the coefficient C satisfies the following relation

C = 2(2 + α(n− 1))C3.

This phase curve Γ clearly admits the variational symmetry. Therefore, the eigenvalues
λi of the n× n symmetric matrix V CC are given by

λ(α) ≡ λi =
6 + α(n− 3)
2 + α(n− 1)

(1 ≤ i ≤ n− 1),

λi = 3 (i = n).

If λ(α) ∈ SL=4 (2.3), the two monodromy matrices m1 and m2 in (2.2) are non-
resonantly degenerate.

From the relation

1 < λ(α) =
6 + α(n− 3)
2 + α(n− 1)

< 3,
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we can easily obtain 0 < α < 2, whose monodromy matrices m1,m2 are non-resonantly
degenerate. We remark here that

λ(α = 0) = 3, λ(α = 2) = 1,

which are the end points of the region of SL=4 of (2.3). This completes the proof on the non-
existence of additional analytic conserved quantities in Hamiltonian systems H0<α<2 with
three or more degrees of freedom. To summarize, we can say that variational symmetry is
an effective tool in proving the non-integrability of Hamiltonian dynamical systems with
many degrees of freedom [3, 4].
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