
WARRANTS PRICE FORECASTING USING 
KERNEL MACHINE & EKF-ANN:                             

A COMPARATIVE STUDY 
HSING-WEN WANG1  JIAN-HONG WANG2, 3 TSE-PING DONG4  SHENG-HSUN HSU5 

1 Department of Business Administration, National Changhua University of Education 
2 Department of Information Engineering, Chungchou Institute of Technology 

3 Department of Communication Engineering, National Chung Cheng University 
4 Graduate Institute of performing Arts, National Taiwan Normal University 

5 Department of Information Management, Chunghua University  
e-mail: wanghong@dragon.ccut.edu.tw 

 

Abstract  
Due to the six unreasonable assumptions companioned 
with the Black-Scholes options pricing model (BSM), 
which often make the miss-pricing result because of 
the difference of market convention in practical. This 
study try to combine the BSM and extended Kalman 
filters-based artificial neural networks (EKF-ANN) to 
deal with the limitation of consideration of the 
influences from many unexpected real world 
phenomena. If we were to soundly take these 
phenomena into account, the pricing error could be 
reduced. In this paper, we try to make a comparative 
study with examined the forecasting accuracy between 
the BSM-based kernel machines (KM-BSM) and the 
BSM-based EKF-ANN (EKF-ANN-BSM). From the 
evidence of Taiwan Warrants market, we found that 
the performance indicates the KM is superior to the 
others, and the hybrid EKF-ANN-BSM framework is 
also better than the pure EKF-ANN. The results show 
that the KM-BSM and hybrid model could 
significantly reduce the normalized root-mean-square-
errors (NRMSE) of forecasting, it helps to provide an 
alternative way to refine the options valuation.  
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1. Introduction 
Warrants are one kind of options that has been 

traded in Taiwan for nine years, which are one of the 
most popular derivatives in financial studies in recent 
years. The well known formula for pricing Warrants is 
a series of BSMs. Since the BSM was proposed in 
1973 [1], it has become the foundation for the 
development of modern derivative commodity pricing 
theories, and has been widely adopted by the financial 

industry [2]. Nevertheless, in terms of its actual 
application, it is limited by a number of presumptions 
and hypotheses that are derived from the model itself, 
and that lead to many unexpected phenomena when 
the model is established. These bring considerable 
influence to bear on the applicability, precision and 
effectiveness of that model [3].  

Therefore, it has risen the widely applications of 
on-line trading system with decision support functions 
to consider the market phenomena, such as the 
programming trading systems. Traditionally, many 
efforts are devoted to employ the neural networks 
architecture based artificial intelligence (AI) methods 
to obtain more accurate pricing at real-time forecasting, 
however, they lacked mostly for several drawbacks of: 
(1) over-fitting on training data would cause a poor 
forecasting capability; (2) no standard criteria to 
determine the huge amount of networks parameters 
and initial weights; (3) easy to trapped into local 
optima etc. Numerous types of neural networks 
encountered the problems; (4) has a difficulty in 
explaining the causes of prediction result due to the 
lack of explanatory power; (5) suffers from difficulties 
with generalization because of over fitting; and (6) In 
addition, it needs too much times and efforts to 
construct a best architecture.   

At the same time, a hybrid approach that 
integrates artificial neural networks, fuzzy inference, 
extended Kalman filters, backpropagations and other 
machine learning techniques has been suggested to 
improve the Warrants valuation accuracy. The results 
of comparative studies indicate that the adaptive 
neural-based fuzzy inference system (ANFIS) shows 
better prediction accuracy [4] with its powerful ability 
to find global optimal solution then different kind of 
neural networks in the past. Recently, KM has been 
gaining popularity to depend on the speedy 
convergence and approximate global optimal solution 



through its state-of-the-art techniques for regression on 
prediction [5]. This paper try to reveal the performance 
variations from the two different style models come 
from dissimilar learning mechanism and hence the 
conclusion is given for chosen selections. 

The remainder of the paper is organized as follows. 
Section 2 describes the literatures on pricing the 
Taiwan Warrants. In Section 3, we discuss the 
powerful artificial intelligence framework, the hybrid 
EKF-ANN-BSM framework. Section 4 introduces the 
Kernel Machines with BSM. Section 5 describes the 
mark to market observations of covered warrants in 
our empirical study and their practical findings. The 
conclusions are given in Section 6. 

 

2. Literatures on Pricing the 
Taiwan Warrants  

Lin [6] focused to find whatever could affect the 
variations of time value or could provide other content 
of information and result the change of time value. 
Feng [7] empirically analyzed five stock options in 
Taiwan to examine whether there were exists mis-
pricing between the open price and bid-ask price. Also, 
he has tested riskless arbitrage opportunity and the 
theoretical and empirical mis-pricing extent by using 
boundary conditions, the put-call parity and the BSM.  

From most of the empirical results on pricing 
options and Warrants show that: (1). The five stock 
options would violate their lower bounds when trading 
costs are added in, and in-the-money options are less 
efficient than out-of-money and at-the-money options. 
(2).The stock options satisfy the put-call parity and do 
not exist riskless arbitrage opportunity. Nevertheless, 
for the bid-ask price composed of options has large 
gap, it would be explained that the stock options 
market in Taiwan is not liquid enough to be arbitraged. 
(3).Due to the less and less trading volumes of stock 
options, the increasing liquidity risk has made the 
theoretical price overvalued. And the option prices 
calculated in terms of implied volatility could be more 
close to the market price than those in terms of 
historical volatility. The results revealed that the BSM 
needs to be refined with certain framework to match 
the real derivatives market. 

Through an empirical study it is discovered that 
the BSM assumptions are actually different from the 
practical situation [8], which ignore the volatility 
skewed and volatility clustering phenomena that 
influence the real mark to market price of options. As a 
result, the more serious the bias transmission of the 
pricing information from volatility behavior is the 
larger variance that the BSM pricing would generate. 
In many studies, a numerous generalized 

autoregressive conditional heteroscedasticity (GARCH) 
models are tried to reduce the bias via forecasting the 
volatility. Unfortunately, the usual GARCH (1, 1) 
includes only one time horizon, and that is not enough 
to replicate the multi-horizon complexity of options 
market trading [9].  

3. The Hybrid EKF-ANN-BSM 
Framework 

Extended Kalman filters-based artificial neural 
networks contain various frameworks; the typical one 
is named ANFIS, which is therefore employed in our 
study. The basic functions of each layer in ANFIS are 
summarized as follows: Layer1: Fuzzification; Layer2: 
Firing strengths; Layer3: Normalization; Layer4: TSK 
outputs; Layer5: Summation. It is a first-order Sugeno 
model. The ith If-Then rule of Sugeno model in the 
premise part and consequent part is as follows: 
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 In equation (1), xi is the input pricing factors; ilA
~  is 

a fuzzy set (the MFs set as Gaussian function); if is the 
ith first-order consequent equation; cin is the 
coefficients of input variables, which is estimated by 
extended kalman filters; n is the number of input 
factors. Obviously, the original linear polynomial 
equation in the consequent part is quite not enough to 
identify the highly nonlinear options (Warrants) price 
behavior and so as its returns or residuals. We perform 
the following BSM in the consequent part instead 
of niniioi xcxccf +++= L11 is as: 
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where, fi: fair value of options; S: spot price of 
underlying; K: strike price; r : instantaneously risk free 
rate; T: maturity; σ : underlying return of 
instantaneously standard deviation; ln(.): natural-log; 
N (.): accumulated properties of standardize normal 
distribution. 
 The reduced form of fi would be: 
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(3) 
The fine-tune procedures of EKF-ANN-BSM 

include applying recursive least-squares estimator and 
steepest descent algorithms for calibrating both 
premise and consequent parameters iteratively. The 
two-phase learning starts from the consequent 



parameters. The updating formula for estimating 
consequent parameters using Extended Kalman Filters 
is:  
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In equation (4), vector c contains the estimated 
consequent parameters, (ci0~ci5), elements of vector a 
are the normalized firing strength of each rule 
multiplies its corresponding inputs, and )1( +kt is the target 
value for the (k+1)th training pattern. The initial 
conditions for this iterative process are c(0)=0 and 
P(0)=ΓI , where I is an identity matrix and γ is a 
large positive value.  
 The second stage of learning involves the 
renewing premise parameters. Define the sum of 
squared errors for the kth training pattern as E(k) = (t(k) – 
O5

(k))2 and O5
(k) is the actual output produced by the 

presentation of the kth pattern.  

4. Kernel Machines with BSM 
This research chooses the support vector machine 
regression function (SVMRF) [10] from various KMs. 
In order to take the implied trading behavior into 
account, we extracted time scale features with SVMRF 
model to perform the nonparametric estimation 
process as valuation model. SVMRF is a radically 
difference type of classifier which have attracted a 
great deal of attention lately due to the novelty of the 
ideals  that they bring to pattern recognition and their 
significant results in practical problems. Given a 
training set 
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which is equivalent to: ( ) 1, 1,...,T
i it x b i Nω ϕ⎡ ⎤+ ≥ =⎣ ⎦

, 

where, ω  represents the weight vector and b is the bias.  
The nonlinear function ( ) : knnϕ ⋅ →R R  maps the input 
or measurement space to a high-dimensional, and 
possibly infinite-dimensional, FS.  Comes down to the 
construction of two parallel bounding hyperplanes at 
opposite sides of a separating hyperplane 

( ) 0T x bω ϕ + =  in the FS, with the margin width 
between both hyperplanes equal to: 22 −× ω . In primal 
weight space, the classifier then takes the 
form: ( ) sgn( ( ) )t Ty x x bω ϕ= + . But, on the other hand, it 
is never evaluated in this form. One defines the 
optimization problem as: 
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where, iξ : soft margin needed to allow 
misclassifications in the set of inequalities; C +∈R : 
tuning hyperparameter, weighting the importance of 
classification errors vis-à-vis the margin width.  The 
solution of the optimization problem is obtained after 
constructing the Lagrangian.  From the conditions of 
optimality, one obtains a quadratic programming 
problem in the Lagrange multipliers, iα .  A 
multiplier, iα , exists for each training data instance. 
Data instances corresponding to non-zero, iα , are 
called support vectors. As is typical for SVMRF, we 
never calculate,ω , or, ( )xϕ . This is made possible due 
to Mercer’s condition, which relates the mapping 
function, ( )xϕ , to a kernel function, ( , )K ⋅ ⋅ , as follows. 
For the kernel function, ( , )K ⋅ ⋅ , Then construct the 
SVMRF classifier as: ( , ) ( ) ( )T

i j i jK x x x xϕ ϕ= [5]. 
SVMRF demonstrates its powerful and superior 

prediction performance [5] under taking few 
computational resources [11]. In view of this, this 
study has adopted the SVMRF model to perform the 
non-parametric options valuation. 

5. Empirical Study and Analysis 
Taking the Taiwan warrants market as empirical study, 
generally speaking, the issued covered warrants are 
mostly based on European-style BSM but in fact 
contracts are American-style. The targets selected for 
two comparative models, namely, EKF-ANN-BSM 
and SVMRF-BSM, in our evaluation experiment 
include Concord Securities Group (SG), Yuanta SG, 
Yuanta SG, Taiwan SG, Masterlink SG and Yuanta 
SG, respectively, with underlying assets: Mega 
Holdings and Teco Corp.  

There are 121 pairs observations for each targets 
employed here. The period of our experiment extends 
from 2003 to 2004 with daily data as reported in Table 
1. All factors are normalized and than fed into the 
models. Considering the five-step-ahead estimating 
with rolling windows to verify the predictive stability 
instead of one-step-ahead would be helpful for tactical 
portfolio management and decrease in transaction cost 
while rebalancing positions.   

The EKF-ANN-BSM model is converged after 
training 10,000 epochs. Variables of premise include 
stock price (S), exercise price (K), volatility estimated 
with GARCH (1, 1) ( σ ) [12], time to maturity (T), 
interest rate (r), etc. The consequence is implied 
volatility. There are six MFs for each variable. The 
SVMRF-BSM is also trained in a batch manner and 
input-output factors treated the same as EKF-ANN-
BSM model [13]. The valuation results for SVMRF-
BSM is displayed in Table 2, in which, we adopt the 
NRMSE as the performance index of the comparative 
valuation of five valuation model for six warrants case 
study. It is showed that although all of the combination 



models have better outcomes than the original, pure or 
individual method, the proposed SVMRF-BSM 
significantly outperforms the other models. These 
results are also corresponding to the discoveries from 
recently studies [14] [15]. For the comparisons with 
the literatures, the Box-Jenkins statistical model [16] is 
took into account. 

Due to the high nonlinear dynamics of options 
price, the SVMRF-BSM shows slightly better 
performance than EFK-ANN-BSM but better than 
BSM-GARCH. The impressive findings support the 
thoughts on the key features extraction deeply improve 
the mechanism of SVMRF-BSM. In terms of 
classification accuracies, our results indicated that AI 
is superior to that of time series forecaster. This might 
be due to following reasons: (1).SVMRF-BSM 
implements the structural risk minimization principle 
which minimizes an upper bound for the generalization 
error rather than minimizing the training error. 
However, EFK-ANN-BSM implements the empirical 
risk minimization principle, which might lead to worse 
generalization than SVMRF-BSM; (2).An EFK-ANN-
BSM may not converge to global solutions due to its 
inherent algorithm design. In contrast, finding 
solutions in SVMRF-BSM is equivalent to solving a 
linearly constrained quadratic programming problem, 
which leads to a global optimal solution; (3).In 
choosing parameters, SVMRF-BSM are less complex 
than EFK-ANN-BSM. The parameters that must be 
determined in SVMRF-BSM are the kernel bandwidth 

2δ  and the margin C. However, in EFK-ANN-BSM, 
the number of hidden layers, number of hidden nodes, 
transfer functions and so on must be determined. 
Improper parameter selection might cause the over-
fitting problem. 
 
Table 1. Descriptions of warrant contracts in Taiwan 
covered warrant market 

Warrant 
Code # 

Warrants 
Name 

Under-lying Listing 
Day 

Maturity Exercise 
Price 

Strike 
Ratio 

0550 Concord01 MegaHoldings 4/8/03 3/2/04 21.93 1.04 

0575 YuantaA4 MegaHoldings 21/8/03 20/2/04 19.37 1 

0651 YuantaB9 MegaHoldings 22/9/03 22/3/04 17.2 1 

0678 Taiwan14 MegaHoldings 14/10/03 13/4/04 20.7 1 

0645 Masterlink23 Teco  19/9/03 18/3/04 13.09 1 

0658 YuantaC4 Teco 25/9/03 24/3/04 14.75 1 

 

Table 2. Comparative valuation performance of two 
valuation model for six warrants case study by                 
NRMSE                (unit: × 0.01) 

 # 0550 # 0575 # 0651 # 0678 # 0645 # 0658 
BSM-GARCH 0.0712

40763 
0.04285
3237 

0.04746
3902 

0.06637
8802 

0.05694
051 

0.05932
9069 

Box-Jenkins 
statistical model 

0.0928
43 

0.06103
74 

0.06153
745 

0.09855
63 

0.07126
45 

0.07542
8 

EKF-ANN 0.0299
9548 

0.04265
4192 

0.04046
9062 

0.05135
4704 

0.02217
1996 

0.03047
7871 

EKF-ANN-
BSM 

0.0296
14328 

0.03081
7650 

0.02917
6479 

0.04183
7095 

0.02113
8242 

0.02719
7363 

SVMRF-BSM 0.0293
0662 

0.03223
2799 

0.01356
7201 

0.03193
1216 

0.02018
5745 

0.01560
0854 

6. Conclusions 

The success of the proposed SVMRF-BSM model 
could be attributed to the following three reasons: first, 
the structure of warrant price is changing over 
periodical time scale, SVMRF-BSM follow the 
changing periodical structure, and, second, SVMRF-
BSM are capable to capture all the structure-break (or 
the changing-point) to be the important features. The 
third reason is the important features enhance the 
SVMRF-BSM’s capability of mapping input data into 
high dimensional reproducing kernel Hilbert space 
which has robust topological structures to capture the 
nonlinear relationship and estimation ability.  
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