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Abstract

We study integrability of a system of nonlinear partial differential equations consis-
ting of the nonlinear d’Alembert equation 2u = F (u) and nonlinear eikonal equation
uxµ

uxµ = G(u) in the complex Minkowski space R(1, 3). A method suggested makes
it possible to establish necessary and sufficient compatibility conditions and construct
a general solution of the d’Alembert-eikonal system for all cases when it is compati-
ble. The results obtained can be applied, in particular, to construct principally new
(non-Lie, non-similarity) solutions of the non-linear d’Alembert, Dirac, and Yang-
Mills equations. Solutions found in this way are shown to correspond to conditional
symmetry of the equations enumerated above. Using the said approach, we study in
detail conditional symmetry of the nonlinear wave equation 2w = F0(w) in the four-
dimensional Minkowski space. A number of new (non-Lie) reductions of the above
equation are obtained giving rise to its new exact solutions which contain arbitrary
functions.

1 Introduction

In the present paper we report some results on the study of the nonlinear d’Alembert-
eikonal system, which are shown to be intimately related to the problem of investigation
of conditional symmetry of the multidimensional nonlinear wave equation, obtained in
collaboration with I.V. Revenko and W.I. Fushchych (Institute of Mathematics, Kyiv).
Saying about the d’Alembert-eikonal system, we mean the system of two nonlinear par-
tial differential equations (PDEs) which consists of the nonlinear d’Alembert and eikonal
equations taken together

2u ≡ ∂µ∂
µu = F (u), (∂µu)(∂µu) = G(u). (1)

Here u = u(x) ∈ C2(R4,R1); ∂µ = ∂/∂xµ, µ = 0, 3; F (u), G(u) are some smooth
functions. Hereafter, summation over repeated indices in the Minkowski space with the
metric tensor gµν = δµν × (1,−1,−1,−1) is understood.
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The above system plays an exceptional role when studying reductions of Poincaré
invariant PDEs for scalar, spinor, and vector fields. Let us briefly consider a simplest
example, reduction of the nonlinear wave equation

2w = F0(w), F0 ∈ C1(R1,R1). (2)

It is well-known that the maximal symmetry group of Eq.(2) with an arbitrary F0

is the Poincaré group P (1, 3). Furthermore, the most general Poincaré-invariant Ansatz
reducing it to an ordinary differential equation (ODE) reads

w(x) = ϕ
(
u(x)

)
, (3)

where u(x) is an absolute invariant of a three-parameter subgroup of the Poincaré group.
Now, let us ask a simple, at the first sight, question: Do invariant solutions exhaust

the set of all possible Ansätze of the form (3) reducing Eq.(2) to ODE? Negative answers
to these kinds of questions lead to creation of a concept of conditional symmetry of partial
differential equations ([1, 2]).

Inserting the Ansatz (3) into Eq.(2), we have

(∂µu)(∂µu)ϕ′′(u) + (2u)ϕ′(u) = F0

(
ϕ(u)

)
. (4)

As we require Eq.(4) be ODE with respect to u, coefficients of ϕ′′, ϕ′ should be functions
of u only, i.e. the function u has to satisfy the d’Alembert-eikonal system (1)!

It is straightforward to check that each invariant of a three-parameter subgroup of the
Poincaré group satisfies system (1) with properly chosen F (u), G(u). But the inverse
assertion is not true. The set of invariants of the group P (1, 3) is a small part of the whole
set of solutions of the d’Alembert-Hamilton system.

As shown in [3]–[5], the Ansatz

ψ(x) =
{
if

(
u(x)

)
γµ∂µu(x) + g

(
u(x)

)}
χ, (5)

where γµ, µ = 0, 3 are 4 × 4 Dirac matrices, χ is a four-component constant column and
u(x) is a solution of the d’Alembert-eikonal system, reduces the nonlinear Dirac equation
to a system of two ODEs for the functions f(u), g(u). In [6], an Ansatz for the Yang-
Mills field has been suggested, which maps a subset of solutions of Eq.(1) into a subset of
solutions of the SU(2) Yang-Mills equations.

A possibility to construct such physically different fields as the Yukawa (scalar), Dirac
(spinor) and Yang-Mills (vector) fields via solutions of the system (1) evidences a funda-
mental nature of the d’Alembert-eikonal system. That is why, it attracted much attention,
a number of very interesting results having been obtained.

To the best of our knowledge, the first paper on exact solutions of Eqs.(1) was published
by Jacobi (see the list of references in [7]). He studied a three-dimensional elliptic analog
of system (1) with F = G = 0

ux1x1 + ux2x2 + ux3x3 = 0, u2
x1

+ u2
x2

+ u2
x3

= 0 (6)

with a complex-valued function u(~x) and constructed the following class of its exact solu-
tions:

C0(u) + C1(u)x1 + C2(u)x2 + C3(u)x3 = 0, (7)
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where C0(u), . . . , C3(u) are arbitrary smooth functions satisfying the equality

C2
1 (u) + C2

2 (u) + C2
3 (u) = 0. (8)

Later on, Smirnov and Sobolev [8]–[10] obtained independently formulae (7), (8) and
proved that they give a general solution of system (6).

Some important results on exact solutions of system of PDEs (1) were obtained by
Bateman [11], Cartan [12] and Erugin [13].

Recently, Collins [14] using differential geometry methods has obtained a general so-
lution of the three-dimensional d’Alembert-eikonal system. But his approach can not be
applied to the four-dimensional system of PDEs (1).

We have developed a technique making it possible to study compatibility of the over-
determined system of PDEs (1) and to construct its general solution. Here we present
only principal results omitting the proofs (they can be found in [15]–[17]).

2 List of principal results

In the following, we study the generalized d’Alembert-eikonal system supposing that u =
u(x) is a complex-valued function of four complex variables x0, x1, x2, x3.

Evidently, provided G(u) 6= 0, system (1) is reduced to the form

2ũ = F̃ (ũ), (∂µũ)(∂µũ) = 1

by means of the change of the dependent variable

u→ ũ =
u∫ (
G(τ)

)−1/2
dτ.

Consequently, instead of (1) we can study a system of PDEs of the form

2u = F (u), (∂µu)(∂µu) = λ, (9)

where λ = 0, 1.

Theorem 1 The overdetermined system of PDEs (1) is compatible if and only if the
function F (u) has the form

F (u) =
λN

u+ C
, (10)

where C is an arbitrary complex constant, N = 0, 1, 2, 3.

Thus, compatible system of PDEs (1) is equivalent to the following one:

2u =
λN

u
, (∂µu)(∂µu) = λ, (11)

where λ = 0 or λ = 1.
A general solution of system of nonlinear PDEs (11) is given by the following assertions.
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Theorem 2 General solution of the system of nonlinear PDEs (11) with N = 0, λ = 0
reads

Aµ(u, τ)xµ +A(u, τ) = 0,

where τ = τ(x, u) is determined in implicit way

Bµ(u, τ)xµ +B(u, τ) = 0

and Aµ(u, τ), Bµ(u, τ), A(u, τ), B(u, τ) are arbitrary complex-valued functions satisfy-
ing the conditions

AµA
µ = AµB

µ = BµB
µ = 0, Bµ

∂Aµ

∂τ
= 0.

Theorem 3 General solution of system of nonlinear PDEs (11) with N = 3, λ = 1 reads

u2 =
(
xµ +Aµ(τ)

)(
xµ +Aµ(τ)

)
,

where the function τ = τ(x) is determined in implicit way(
xµ +Aµ(τ)

)
Bµ(τ) = 0

and functions Aµ(τ), Bµ(τ) satisfy the relations

A′
µB

µ = 0, BµB
µ = 0.

Theorem 4 General solution of system of nonlinear PDEs (11) with N = 2, λ = 1 reads

1. u2 =
(
xµ +Rµ(τ)

)(
xµ +Rµ(τ)

)
+

[
Bµ(τ)

(
xµ +Rµ(τ)

)]2
,

where the function τ = τ(x) is determined in implicit way(
xµ +Rµ(τ)

)
B′µ(τ) = 0

and Rµ, Bµ are arbitrary smooth functions satisfying the relations

R′
µ = T (τ)Bµ, BµB

µ = −1, B′
µB

′µ = 0

with an arbitrary T (τ);

2. u2 =
(
xµ +Rµ(τ)

)(
xµ +Rµ(τ)

)
+

[
dµ

(
xµ +Rµ(τ)

)]2
,

where the function τ = τ(x) is determined in implicit way(
xµ +Rµ(τ)

)
R′µ(τ) +

(
xµ +Rµ(τ)

)
dµdνR

′ν(τ) = 0,

dµ = const, dµd
µ = −1; Rµ are arbitrary functions satisfying the relation

R′
µR

′µ + (dµR
′µ)2 = 0.
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Theorem 5 General solution of system of nonlinear PDEs (11) with N = 1, λ = 1 reads

u2 =
(
aµxµ + h1(θµx

µ)
)2

+
(
bµx

µ + h2(θµx
µ)

)2
,

where h1, h2 are arbitrary smooth functions; aµ, bµ, θµ are arbitrary complex constants
satisfying the relations

aµa
µ = 1, bµbµ = −1, aµb

µ = aµθ
µ = bµθ

µ = θµθ
µ = 0.

Theorem 6 General solution of system of nonlinear PDEs (11) with N = 0, λ = 1 reads

u = Aµ(τ)xµ +R1(τ),

where the function τ = τ(x) is determined in implicit way

Bµ(τ)xµ +R2(τ) = 0

and Aµ(τ), Bµ(τ), R1(τ), R2(τ) are arbitrary smooth functions satisfying the relations

AµA
µ = 1, A′

µB
µ = 0, AµB

µ = 0, BµB
µ = 0.

In the above formulae, prime denotes differentiation with respect to τ .
The principal idea of the proof of the above theorems is a linearization of the eikonal

equation u2
x0
− u2

x1
− u2

x2
− u2

x3
= 1 by means of a suitable contact transformation

y′µ = fµ(y, v, v
1
), v′ = g(y, v, v

1
), v′yµ

= fµ(y, v, v
1
), (12)

where v
1

= {∂v/∂yµ, µ = 0, 3}.
Solving a linear equation and substituting the result into the nonlinear d’Alembert

equation transformed according to (12), we arrive at an overdetermined system of PDEs
with three independent variables. It is reduced to an integrable form by a sequence of
transformations (12) with µ = 0, 1, 2.

The theorems 2–6 give a description of the general solution of the nonlinear d’Alembert-
eikonal system in a parametric form. But for some special choices of arbitrary functions,
it is possible to obtain particular solutions in explicit form. Below, we present without
derivation real solutions of the system of PDEs (9).

1) N = 0, λ = 1

u(x) = x0; (13)

2) N = 1, λ = 1

u(x) = ±(x2
0 − x2

3)
1/2; (14)

3) N = 2, λ = 1

u(x) = ±(x2
0 − x2

1 − x2
3)

1/2; (15)

4) N = 3, λ = 1

u(x) = ±(x2
0 − x2

1 − x2
2 − x2

3)
1/2; (16)
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5) N = 0, λ = −1

u(x) = x1 cosW1(x0 + x3) + x2 sinW1(x0 + x3) +W2(x0 + x3),

x0 + x1 sinW1

(
u(x) + x3

)
+ x2 cosW1

(
u(x) + x3

)
+ (17)

W2

(
u(x) + x3

)
= 0;

6) N = 1, λ = −1

u(x) = ±
{(
x1 +W1(x0 + x3)

)2
+

(
x2 +W2(x0 + x3)

)2}1/2
; (18)

7) N = 2, λ = −1

±u(x) + C = x0 sinh(τ/C)− x1 cosh(τ/C),

τ = −x2 ±
{
x2

0 − x2
1 +

(
C ± u(x)

)2}1/2
;

±u(x)− C = x1 sin(τ/C) + x2 cos(τ/C),

τ = −x0 ±
{
x2

1 + x2
2 −

(
−C ± u(x)

)2}1/2
; (19)

x0 sinh τ − x3 cosh τ = 2−1/2{±(−u2(x)− xµx
µ)1/2 ± u(x)},

τ = arcsin
{(√

2(x2
1 + x2

2)
1/2

)−1(
±u(x)∓ (−u2(x)− xµx

µ)
)1/2}

−

arcsin
{
x2(x2

1 + x2
2)

−1/2
}
,

u(x) = ±(x2
1 + x2

2 + x2
3)

1/2;

8) N = 3, λ = −1

±
(
u2(x)− x2

3

)1/2
+ C = x0 sinh(τ/C)− x1 cosh(τ/C),

τ = −x2 ±
{
x2

0 − x2
1+

(
C ± [u2(x)− x2

3]
1/2

)2}1/2
;

±
(
u2(x)− x2

3

)1/2
− C = x1 sin(τ/C) + x2 cos(τ/C), (20)

τ = −x0 ±
{
x2

1 + x2
2 −

(
C ∓ [u2(x)− x2

3]
1/2

)2}1/2
.

Here W1,W2 ⊂ C2(R1,R1) are arbitrary functions, C is a real non-null constant.

3 Conditional symmetry of the multi-dimensional
nonlinear wave equation

As pointed down in the Introduction, substitution of the Ansatz (3), where f(u), g(u) are
solutions of Eqs.(1), into the nonlinear wave equation (2) reduces it to ODE

g(u)ϕ′′(u) + f(u)ϕ′(u) = F0(ϕ). (21)

Let us show that the class of Ansätze obtained in this way is substantially wider
than the one constructed by means of the symmetry reduction procedure. Within the
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framework of the said procedure, to reduce Eq.(2) to ODE, one has to construct Ansätze
invariant under the three-parameter subgroups of its symmetry group (see, e.g. [18]–[20]).
It is well-known that, provided F0 is an arbitrary function, the maximal symmetry group
admitted by PDE (2) is the ten-parameter Poincaré group P (1, 3) having the generators

Pµ = gµν∂
ν , Jµν = xµPν − xνPµ. (22)

Furthermore, the general form of the said Ansätze is given by formula (3), where u(x)
is an invariant of some three-parameter subgroup of the group P (1, 3). An exhaustive
description of invariants of the Poincaré group having generators (22) is given in [21]. In
particular, it is established that any invariant of a three-parameter subgroup of the group
P (1, 3) can be reduced by an appropriate transformation from the Poincaré group either
to the form (13)–(16) or to the form

x0 + x3, x1 + θ ln(x0 + x3), x1 + θ(x0 + x3)2, x2
1 + x2

2, x2
1 + x2

2 + x2
3,

where θ is a constant.
But the invariants listed above are very special cases of formulae (17)–(19) which in

their turn determine only particular solutions of the d’Alembert-Hamilton system.
Such a substantial extension of the class of Ansätze reducing the nonlinear wave equa-

tion is achieved at the expense of its conditional symmetry.
Consider, as an illustration, the Ansatz

w(x) = ϕ
(
x1 + ρ(x0 + x3)

)
, (23)

where ρ is an arbitrary smooth function, obtained by substitution of the first formula from
(17) with W1 = 0, W2 = ρ into (3).

Despite of the fact that the Ansatz (23) is not Poincaré-invariant, it reduces PDE (2)
to the ODE ϕ′′ = −F0(ϕ). This phenomena can not be in principle understood in the
framework of the classical Lie approach, because existence of such Ansätze is a consequence
of conditional invariance of the nonlinear wave equation.

Really, the manifold (23) is invariant under the three-parameter Abelian Lie group
with the generators

Q1 = ∂0 − ∂3, Q2 = ∂0 + ∂3 − 2ρ′∂1, Q3 = ∂2

(this fact is established by direct computation). Obviously, the operator Q2 can not be
represented as a linear combination of the operators Pµ, Jµν with constant coefficients
which means that equation (2) is not invariant under the Lie algebra A = 〈Q1, Q2, Q2〉.

We will prove that PDE (2) is conditionally-invariant under the algebra A. Acting by
the second prolongations of the operators Qa on (2), we have

Q1
2
L = 0, Q2

2
L = 4ρ′′∂1Q1w, Q3

2
L = 0,

where L = 2w − F0(w).
Hence, it follows that the system of PDEs

2w = F0(w), Qaw = 0, a = 1, 2, 3

is invariant under the Lie algebra A, the same as what was to be proved.



56 R. ZHDANOV

All Ansätze obtained by substitution of the formulae for u(x) listed in (17)–(20) (with
the only exception of the last formula from (19)) into (3) correspond to conditional in-
variance of the nonlinear wave equation and give rise to the new (non-Lie) reductions of
PDE (2). Hence it follows, in particular, that the nonlinear d’Alembert equation admits
an infinite conditional symmetry.

4 Some generalizations

An expression

w(x) = ϕ(ω1, ω2), (24)

where ωi = ωi(x) ∈ C2(R4,R1) are supposed to be functionally-independent, is a natu-
ral generalization of the Ansatz (3). The functions ω1(x), ω2(x) are determined by the
requirement that the substitution of (24) into (2) yields a two-dimensional PDE for a
function ϕ = ϕ(ω1, ω2). As a result, we obtain the overdetermined system of PDEs [22]

2ω1 = f1(ω1, ω2), 2ω2 = f2(ω1, ω2), ω1xµω1xµ = g1(ω1, ω2),
ω2xµω2xµ = g2(ω1, ω2), ω1xµω2xµ = g3(ω1, ω2), (25)

rank

∥∥∥∥∥ ∂ωi

∂xµ

∥∥∥∥∥
2 3

i=1 µ=0

= 2

and besides, the function ϕ(ω1, ω2) satisfies a two-dimensional PDE

g1ϕω1ω1 + g2ϕω2ω2 + 2g3ϕω1ω2 + f1ϕω1 + f2ϕω2 = F (ϕ). (26)

Consider the following problem: to describe all smooth real functions ω1(x), ω2(x)
such that the Ansatz (24) reduces Eq.(2) to ODE with respect to the variable ω1. It
means that one has to put coefficients g2, g3, f2 in (26) equal to zero. In other words, it
is necessary to construct a general solution of the system of nonlinear PDEs

2ω1 = f1(ω1, ω2), ω1xµω1xµ = g1(ω1, ω2),

ω1xµω2xµ = 0, ω2xµω2xµ = 0, 2ω2 = 0.
(27)

With an appropriate choice of a function G(ω1, ω2), the change of variables

v = G(ω1, ω2), u = ω2

reduces system (27) to the form

2v = f(u, v), vxµvxµ = λ, (28)
uxµvxµ = 0, uxµuxµ = 0, 2u = 0, (29)

rank

∥∥∥∥∥ vx0vx1vx2vx3

ux0ux1ux2ux3

∥∥∥∥∥ = 2, (30)

where λ is a real parameter taking the values −1, 0, 1.
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Theorem 7 Eqs.(28)–(30) are compatible if and only if

λ = −1, f = −N
(
v + h(u)

)−1
, (31)

where h ∈ C1(R1,R1) is an arbitrary function, N = 0, 1, 2, 3.

Theorem 8 The general solution of the system of Eqs.(28)–(30) being determined within
a transformation from the group P(1,3) is given by the following formulae:

a) under f = −3
(
v + h(u)

)−1
, λ = −1

(
v + h(u)

)2
= (−A′

νA
′ν)−1(A′

µx
µ +B′)2 + (−A′

νA
′ν)−3 ×

(εµναβAµA
′
νA

′′
αxβ + C)2, (32)

Aµx
µ +B = 0;

b) under f = −2
(
v + h(u)

)−1
, λ = −1

(
v + h(u)

)2
= (−A′

νA
′ν)−1(A′

µx
µ +B′)2,

Aµx
µ +B = 0,

(33)

where Aµ = Aµ(u), B = B(u), C = C(u) are arbitrary smooth functions satisfying the
relations

AµA
µ = 0, A′

µA
′µ 6= 0, (34)

c) under f = −
(
v + h(u)

)−1
, λ = −1

(
v + h(x0 − x3)

)2
=

(
x1 + C1(x0 − x3)

)2
+

(
x2 + C2(x0 − x3)

)2
,

u = C0(x0 − x3),
(35)

where C0, C1, C2 are arbitrary smooth functions;

d) under f = 0, λ = −1

1) v = (−A′
νA

′ν)−3/2εµναβAµA
′
νA

′′
αxβ + C,

Aµx
µ +B = 0,

(36)

where Aµ = Aµ(u), B = B(u), C = C(u) are arbitrary smooth functions satisfying the
relations (34);

2) v = x1 cos
(
C1(x0 − x3)

)
+ x2 sin

(
C1(x0 − x3)

)
+ C2(x0 − x3),

u = C0(x0 − x3),
(37)

where C0, C1, C2 are arbitrary smooth functions.
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In the above formulae (32), (36), we denote by εµναβ the completely anti-symmetric
fourth-order tensor (the Levi-Civita tensor), i.e.,

εµναβ =


1, (µ, ν, α, β) = cycle (0, 1, 2, 3),

−1, (µ, ν, α, β) = cycle (1, 0, 2, 3),
0, in the remaining cases,

prime denotes differentiation with respect to u.

Substitution of the results obtained above into formula (24) yields the following col-
lection of Ansätze for the nonlinear d’Alembert equation (2):

1) w(x) = ϕ

([(
−A′

ν(u)A
′ν(u)

)−1(
A′

µ(u)xµ +B′(u)
)2

+(
−A′

ν(u)A
′ν(u)

)−3(
εµναβAµ(u)A′

ν(u)A
′′
α(u)xβ + C(u)

)2]1/2
, u

)
;

2) w(x) = ϕ

((
−A′

ν(u)A
′ν(u)

)1/2(
A′

µ(u)xµ +B′(u)
)
, u

)
;

3) w(x) = ϕ

([(
x1 + C1(x0 − x3)

)2
+

(
x2 + C2(x0 − x3)

)2]1/2
, x0 − x3

)
;

4) w(x) = ϕ

((
−A′

ν(u)A
′ν(u)

)−3/2(
εµναβAµ(u)A′

ν(u)A
′′
α(u)xβ + C(u)

)
, u

)
;

5) w(x) = ϕ

(
x1 cosC1(x0 − x3) + x2 sinC1(x0 − x3) + C2(x0 − x3), x0 − x3

)
.

(38)

Here B, C, C1, C2 are arbitrary smooth functions of the corresponding arguments, Aµ(u)
are arbitrary smooth functions satisfying the condition AµA

µ = 0 and the function u =
u(x) is determined by the second formula from (32).

Substitution of expressions (38) into (24) gives the following equations for ϕ = ϕ(u, v):

1) ϕvv +
3
v
ϕv = −F (ϕ),

2) ϕvv +
2
v
ϕv = −F (ϕ),

3) ϕvv +
1
v
ϕv = −F (ϕ),

4) ϕvv = −F (ϕ),
5) ϕvv = −F (ϕ).

All Ansätze listed in (38) correspond to conditional symmetry of the nonlinear wave
equation (2). It means that for each Ansatz from (38), there exist two differential operators
Qa = ξaµ(x)∂µ, a = 1, 2 such that

Qaw(x) ≡ Qaϕ(ω1, ω2) = 0, a = 1, 2

and besides, the system of PDEs{
2w − F (w) = 0,

Qaw = 0, a = 1, 2
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is invariant in Lie’s sense under the one-parameter groups with the generators Q1, Q2.
For example, the fourth Ansatz from (17) is invariant under the operators: Q1 = Aµ(u)
∂µ, Q2 = A′

µ(u)∂µ. A direct computation shows that the following relations hold:

Qi
2

(2ω) = −(A′αxα +B′)−1Aµ∂µQiw, i = 1, 2,

[Q1, Q2] = 0,

where Qi
2

stands for the second prolongation of the operator Qi. Hence it follows that the

nonlinear wave equation (2) is conditionally-invariant under the two-dimensional commu-
tative Lie algebra having the basis elements Q1, Q2.

Below we give new exact solutions of the nonlinear wave equation (2) obtained with
the use of the technique described above. We adduce only those ones that can be written
down explicitly [22]

1. F (w) = λw3

1) w(x) =
1

a
√

2
(x2

1 + x2
2 + x2

3 − x2
0)

−1/2 tan

{
−
√

2
4

ln
(
C(u)×

(x2
1 + x2

2 + x2
3 − x2

0)
)}
,

where λ = −2a2 < 0,

2) w(x) =
2
√

2
a
C(u)

(
1± C2(u)(x2

1 + x2
2 + x2

3 − x2
0)

)−1
,

where λ = ±a2;

2. F (w) = λw5

1) w(x) = a−1(x2
1 + x2

2 − x2
0)

−1/4
{

sin ln
(
C(u)(x2

1 + x2
2 − x2

0)
−1/2

)
+ 1

}1/2

×{
2 sin ln

(
C(u)(x2

1 + x2
2 − x2

0)
−1/2

)
− 4

}−1/2

,

where λ = a4 > 0,

2) w(x) =
31/4

√
a
C(u)

(
1± C4(u)(x2

1 + x2
2 − x2

0)
)−1/2

,

where λ = ±a2.

In the above formulae, C(u) is an arbitrary, twice continuously differentiable function
on

u(x) =
x0x1 ± x2

√
x2

1 + x2
2 − x2

0

x2
1 + x2

2

,

a 6= 0 is an arbitrary real parameter.
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5 Conclusion

The present paper demonstrates once more that possibilities to construct in explicit form
new exact solutions of the nonlinear wave equation (2) (as compared with those obtainable
by the standard symmetry reduction technique [20, 23]) are far from being exhausted. A
source of new (non-Lie) reductions is the conditional symmetry of Eq.(2).

Roughly speaking, a principal idea of the method of conditional symmetries is the
following: to be able to reduce a given PDE, it is enough to require an invariance of a
subset of its solutions with respect to some Lie transformation group. And what is more,
this subset is not obliged to coincide with the whole set. This specific subsets can be
chosen in different ways: one can fix in some way an Ansatz for a solution to be found
(the method of Ansätze [4, 24] or the direct reduction method [25]) or one can impose an
additional differential constraint (the method of Q-conditional [1, 2, 26] or non-classical
symmetries [27, 28]). But all the above approaches have a common feature: to find a new
(non-Lie) reduction of a given PDE, one has to solve some nonlinear overdetermined system
of differential equations. For example, to describe Ansätze of the form (3), (24) reducing
Eq.(2) to ODEs, one has to integrate systems of nonlinear PDEs (1), (28)–(30). This is a
“price” to be paid for new possibilities to reduce a given nonlinear PDE to equations with
a less number of independent variables and to construct its explicit solutions.
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