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Abstract 

This paper proposes the pricing formula of 
sequential compound options (SCOs) with random 
interest rate and the applications call Milestone Project 
Valuation (MPV). Most compound options in literatures 
are 2-fold with constant parameters through time. The 
multi-fold compound options are just sequential 
compound CALL options. The multi-fold sequential 
compound options proposed in this study are compound 
option on (compound) option with random interest rate 
and allow call/put alteration. Besides, the parameters can 
vary in different folds and make the model more flexible. 
The SCOs can enhance and broaden the usages of 
compound option in real option and financial derivative 
fields, including MPV. The projects that set some critical 
milestones, which should be achieved sequentially, are 
called milestone projects. This study propose the 
milestone project valuation by SCOs with random 
interest rate. 

Keywords: sequential compound option, project 
valuation, real option, random interest rate, option 
pricing 

1. Introduction 
Compound options, the options with options as 

underlying, are one of the important financial 
innovations. The fold number of a compound option 
counts how many option layers tacking directly on other 
underlying options. Original compound options are 
proposed by Geske (1979) with 2-fold. A specific 
multi-fold compound option formula is revealed by Carr 
(1988) while the sequential compound call (SCC) is 
proved by Thomassen & Van Wouwe (2001) and Chen 
(2003). Chen (2002) and Lajeri-Chaherli (2002) prove 
the 2-fold compound options through risk-neutral 
method simultaneously. Elettra & Rossella (2003) 
generalized the 2 fold compound calls by time-dependent 
parameters. 

Many financial applications extending from the 
compound option theory are widely employed. The 
seminal study by Geske and Johnson (1984a) derived the 
analytic American put option under the inspiration of 
compound option, while Carr (1988) presented the 
sequential exchange options formula. Corporate debt 
(Geske & Johnson, 1984b; Chen, 2003), chooser options 
(Rubinstein, 1992), capletions and floortions (the options 
of the interest rate options) (Musiela & Rutkowski, 1998) 
are also priced by compound options.  

Besides the financial derivative pricing, the 
compound option theory is also used widely in the real 
option field originated by Trigeorgis (1993). However, 
the sophisticated structure of the derivative pricing and 
the wide deployment in the real option field make the 
current compound option methodology insufficient. The 
2-fold compound options are not enough for the 
block-building financial innovations whereas the 
multi-fold compound options focus on the sequential 
compound calls only.  

This paper extend the SCOs from fold-wise 
interest rate (Lee et al., 2006) to random interest rate. 

The SCOs use vanilla European options as building 
blocks and extend the compound option theory to 
multi-fold sequential compound options with random 
interest rate as well as (SCOs) alternating puts and calls. 
The SCOs are (compound) options on compound options, 
where the option features of different folds could be 
assigned arbitrarily as call or put. The SCOs presented in 
this paper allow the parameters (such as volatility) to 
vary in different folds. The random interest rate model 
derived by the forward measure enable the long-term 
SCOs more realistic. The explicit valuation formula and 
sensitivity analysis of SCOs are proved by the 
risk-neutral method in this study. Comparing with the 
P.D.E. method, there is more financial intuition 
coinciding with the risk-neutral SCOs derivation.  

The multi-fold SCOs alternating puts/calls with 
fold-dependent parameters can enhance the compound 
option application, especially in real option fields. The 
real world cases may often be multiple interacting 
options containing different option types 
(Trigeorgis,1993), such as expansion, contraction, 
shutting down, abandon, switch and or growth. The 
interaction between different types of options could be 
evaluated by the SCOs. The SCOs proposed in this study 
make the exotic multiple interacting option valuation 
possible. Also, the financial derivative pricing, such as 
exotic chooser options and capletions, can also employ 
the SCOs.  
 The applications of SCOs call Milestone Projection 
Valuation (MPV) is proposed in this paper. The projects 
that set some critical milestones, which should be 
achieved sequentially, are called milestone projects. The 
milestone projects would fail if any one of the serial 
milestones is not completed. The MPV method is 
designed for multi-stage project based on the results of 
SCO. Each milestone completion has the choice to enter 
the next stage or not, hence the sequential project 
milestone could be viewed as the sequential compound 
CALL options.  
 This paper is arranged as the following: section 2 
presents the SCOs pricing formula. Section 3 exhibits the 
MPV method. The paper ends with the conclusion. 

2. Sequential Compound Options with 
Random Interest Rate 
   This section defines the notations and derives the 
multi-fold SCOs with interest rate through the forward 
measure method. The SCOs, composed of European 
options, are the (compound) option on compound options, 
where the option features of different folds could be 
assigned arbitrarily as either call or put.  
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Curnow & Dunnett (1962) reveals that the k-variate 
normal integral can be constructed from the (k–1)-variate 
by adding another dimension to the upper limit vector 
and correlation matrix.  
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option with the asset as its underlying. It should note that 
fold numbers come in the reverse order.  

The option feature, Λu,u, represents the call or put 
attribute of the (underlying) SCO with fold number 
(i–u+1) ranging from Tu-1 to Tu, 1!"u . If the SCO of 
this fold is a call, Λu,u=1; otherwise, Λu,u=–1 for the put. 
For example, a call on a put (2-fold compound option) 
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    Under the same assumption of Thomassen and Van 
Wouwe (2001) except "parameters constant in each fold", 
the following theorem derives the pricing formula of the 
i-fold SCO with random interest rate alternating calls and 
puts by the risk-neutral method. Although the SCO 
presented in later section can start at any time Tu, the 
SCO in this theorem is starting from T0 without loss of 
generality. The notation " *v ", meaning "start from time 
Tv", is designed for time shift in sensitivity derivation. 
Under the above notations, the i-fold SCO price at time 
T0, )(
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" , is represented in Theorem 1.  
Theorem 1: Sequential compound option 

pricing with random interest rate 
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This theorem is proved by induction. The 
dynamics of related securities are exhibited before the 
induction procedures. Let T be a fixed maturity date and 
P
~  be the risk-neutral measure. Let ][
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 The exploited dynamics are used for the induction. 
The (2.1) is true for i=1.  For the case Λ1,1=+1 is 
exhibited in Shreve (2004) and the other case, Λ1,1=� 1, 
can be proved by the similar way.  
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At the maturity time T1 of the i+1-fold compound 
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according to the fundamental theory of asset pricing 
(Baxter and Runie, 1996), where F0  denotes the 
information available at time T0 from the asset price. 
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 z12 is the standard normal random variable.  
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Note that the lower limit of the integration is also 
changed by (2.3).  
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The last equation is derived by Curnow & Dunnett (1962) 
and the following is to exhibit that 
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is proved.  Q.E.D. 

3. The Milestone Project Valuation 
(MPV) 
 This section proposes the Milestone Projection 
Valuation (MPV) method for the multi-stage projects. 
The projects that set some critical milestones which 
should be achieved sequentially are call milestone 
projects. The milestone projects are failed if any one of 
the serial milestones is not completed. The milestone 
projects are very common in real situation, including 
R&D management, manufactures, etc. Recently, the 
popular real option approach is applied for flexible 
consideration and reasonable explanation. Under the 
framework of financial option theory, the real option 
approach decomposes the project valuation as several 
parameters, including the present value, costs, time to 
maturity, value uncertainty (volatility) and interest rate. 
Most of the existing real option studies for the 
multi-stage milestone project valuations use one-fold 
options, while the others apply multi-fold options under 
the assumption of constant parameter through whole the 
processes (Casimon et al., 2004). However, the 
parameters often change due to the milestone completion 
and the project values will be misestimated if parameters 
are assumed constant through all the time. The one-fold 
real option approach for multi-stage project is even 
inadequate.  

Based on the results of SCOs (2.1), this paper 
proposes a method called Milestone Projection Valuation 
(MPV) for multi-stage project valuation. Each milestone 
completion has the choice to enter the next stage or not, 
and the sequential project milestone can be viewed as the 
sequential compound CALL options. The MPV method 
adopts the results of SCOs and the project is regarded as 
the corresponding stock in SCOs. Under the same 
denotations as Theorem 1, the MPV valuation formula is 
expressed as 
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, where the strikes represent the cost at different stages; 
the volatilities come from the project value fluctuation 
and the dividend rates are replaced as the depression 
rates. The option features ( gi,! ) equal one (for any i, g) 
due to the underlying compound calls, hence disappear in 
the MPV pricing formula.  

Compared with the literatures, the MPV not only 
applies the multi-fold compound option theory, but also 
allows the parameters piece-constant varying with the 
distinct stages. The different parameters of different 
stages can adapt to the change of project nature after the 
milestone completion. More phenomena can be 
discovered from the parameter comparisons. Under the 
MPV model, the implicit "valuation experience" is 
decomposed as parameters. 

The new drug applications (NDAs) may be the 
most famous and significant milestone projects.  Under 
the consideration of human health, the NDAs are the 
well-regulated including the stages of pre-clinical trial, 
phase 1, phase 2, phase 3 and approval phase. Each stage 
has a definitive milestone. The time- and cost-consuming 
NDAs are the cores of the pharmaceutical companies 
because the R&D results from NDAs dominate their 
future! The MPV model can enhance the NDAs 
valuation under a more reasonable framework and 
improve the R&D management of these companies. 

4. Conclusion 
    The puts/calls-alternating sequential compound 
options (SCOs) with random interest rate and fold-wise 
constant parameters are proposed in this study. Based on 
the results, the Milestone Projection Valuation (MPV) 
method is proposed for multi-stage project valuation. 
 Traditional compound options are just either 
puts/calls-alternating 2-fold compound options or 
multi-fold sequential compound call without 
puts/calls-alternating. Seldom fold-wise differences nor 
the random interest rate are taken into consideration. The 
SCOs with random interest rate presented in this paper 
have the following specialties. First of all, the multi-fold 
SCOs with arbitrary fold feature assignments as puts or 
calls can enhance the compound options usage far 
beyond the traditional sequential compound calls. 
Second, the parameters (interest rate, volatility) often 
vary with time or folds due to different characteristics. 
The presented SCOs formula enables random interest 
rate and volatility change fold-wise to capture the 
"sequential" features. The third is that the arbitrary fold 
number of SCOs can be formed. 
 The SCOs not only generalized the contributions 
of Black-Scholes (1973), Geske (1979) and Thomassen 
& Van Wouwe (2001) to put/call alternating multi-fold 
compound options, but can be evaluated by linear 
combination of the stock and strike prices weighted by 
different variate normal integrations. Corresponding to 
intuitions, the SCOs seem as the multi-dimensional 
options extending from Black-Scholes (1973) and Geske 
(1979). The risk-neutral method enriches the SCOs 
pricing formula derivation with financial implications. 
 The SCOs can enhance and broaden the usages of 
compound option in real option and financial derivative 
fields. The multiple interacting options incorporating 
different type real options sophisticatedly can be 
evaluated by aggregation of various SCOs.  

The MPV is designed for multi-stage project 
valuation. The MPV method adopts the results of SCO 
and the project is regarded as the corresponding stock in 
SCO. Compared with the literatures, the MPV not only 
applies the multi-fold compound option theory, but also 
allows the parameters piece-constant varying with the 
distinct stages. The different parameters of different 
stages can adapt to the change of project nature after the 
milestone completion. More phenomena can be 
discovered from the parameter comparisons. Under the 
MPV model, the implicit "valuation experience" is 
decomposed as parameters. 
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