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Abstract

An enlarged gauge group acts nonlinearly on the class of nonlinear Schrödinger equa-
tions introduced by the author in joint work with Doebner. Here the equations and
the group action are displayed in the presence of an external electromagnetic field.
All the gauge-invariants are listed for the coupled nonlinear “Schrödinger-Maxwell”
theory. Time-dependent gauge parameters result in additional terms of the type in-
troduced by Kostin and Bialynicki-Birula and Mycielski, but Maxwell’s equations for
the (non-quantized) gauge-invariant electric and magnetic fields remain linear.

1 Nonlinear Schrödinger Equations

In earlier work Doebner and I introduced a family of nonlinear Schrödinger equations in
order to interpret quantum-mechanically certain representations of infinite-dimensional
algebras and groups [1–3]. We proposed these equations as candidates for describing
quantum systems with dissipation. Let us now set them up in a slightly different but
mathematically and physically useful form [4,5]. Put

ρ = ψψ , ĵ =
1
2i

[ψ∇ψ − (∇ψ)ψ] , (1.1)

where ψ(x, t) is a square-integrable, time-dependent wave function, ρ is the associated
probability density in position as a function of time, and ĵ is a (non-gauge invariant)
probability flux density. Introduce the real nonlinear functionals

R1 =
∇ · ĵ
ρ

, R2 =
∇ 2ρ

ρ
, R3 =

ĵ 2

ρ2
, R4 =

ĵ · ∇ρ
ρ2

, R5 =
(∇ρ)2

ρ2
. (1.2)

The total probability
∫
ρ(x, t) dx is conserved if ρ is the divergence of a vector field falling

off at infinity. Noting that

Re

[
ψ̇

ψ

]
=

1
2
ρ̇

ρ
, (1.3)
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we can write our general nonlinear Schrödinger equation in a way that guarantees prob-
ability conservation, and accommodates from the start possible couplings with general
external electric and magnetic potentials:

i
ψ̇

ψ
= i

 2∑
j=1

νjRj [ψ] +
∇ · (A(x, t)ρ)

ρ

 +

 5∑
j=1

µjRj [ψ] +
∇ · (A1(x, t)ρ)

ρ
+
A2(x, t) · ĵ

ρ
+ U(x, t)

 ,
(1.4)

where: the νj (j = 1, 2) and the µj (j = 1, . . . , 5) are real coefficients; A, A1, and A2 are
distinct, external real-valued vector fields; and U is an external real-valued scalar field.
The relationship of this equation to the usual, time-dependent linear Schrödinger equation

ih̄ψ̇ =
[−ih̄∇− (e/c)A(x, t)]2

2m
ψ + eΦ(x, t)ψ , (1.5)

where A,Φ are external electromagnetic potentials, is easily obtained from the expansion

∇ 2ψ

ψ
= iR1[ψ] +

1
2
R2[ψ]−R3[ψ]− 1

4
R5[ψ] , (1.6)

and is given by

ν1 = − h̄

2m
, ν2 = 0 , A =

e

2mc
A ,

µ1 = 0 , µ2 = − h̄

4m
, µ3 =

h̄

2m
, µ4 = 0 , µ5 =

h̄

8m
,

A1 = 0 , A2 = − e

mc
A , U(x, t) =

e

h̄
Φ(x, t) +

e2

2mh̄c2
A2.

(1.7)

The class of nonlinear equations that Doebner and I derived (in the absence of magnetic
fields) allows the νj and µj to take arbitrary, real values (with ν1 and µ3 unequal to 0).
Symmetries and reductions of such equations have been investigated by several authors
[6,7]. An important goal is to understand whether and how the coefficients in these
equations describe dissipative, diffusive, or irreversible processes in quantum mechanics.

2 Nonlinear Gauge Transformations

The nonlinear gauge group consists of certain local transformations of ψ that leave the
probability density in position-space invariant. Its derivation and the justification for
its interpretation as a group of gauge transformations have been discussed extensively
elsewhere [4,5,8,9]. While nonlinear gauge transformations change the time-evolution,
and can connect linear to nonlinear quantum theories, they do not change the physical
content.

Write ψ(x, t) = R(x, t) exp iS(x, t) , with R and S real. Let γ,Λ ∈ R, with Λ 6= 0,
and let θ(x, t) be a smooth real-valued function. Consider the group of transformations
ψ ′ = N [Λ, γ, θ ](ψ) defined by

R ′ = R , S ′ = ΛS + γ lnR+ θ . (2.1)
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Then the composition of two such transformations is given by

N [Λ1, γ1, θ1] ◦N [Λ2, γ2, θ2] = N [Λ1Λ2, γ1 + Λ1γ2, θ1 + Λ1θ2] , (2.2)

and we have the semidirect product of the affine group in one dimension with the usual
quantum-mechanical gauge group of U(1)-valued functions of x and t , acting nonlinearly
in the Hilbert space. While N is not actually well-defined by Eq. (2.1) as a mapping (since
S is only defined up to integer multiples of 2π) , it is sufficient for the present interpretation
that if ψ satisfies an equation in our class, there exists ψ ′ obeying a transformed equation.
An appropriate selection of ψ ′ can always be made.

Under the gauge transformations of Eq. (2.1), it is straightforward to obtain

ρ ′ = ψ ′ ψ ′ = ρ ,

ĵ ′ =
1
2i

[ψ ′∇ψ ′ − (∇ψ ′)ψ ′ ] = Λ ĵ +
γ

2
∇ρ + ρ∇θ .

(2.3)

Now abbreviate Eq. (1.4) as ψ̇/ψ = ia+ b, and consider first the imaginary part a. Since
a = (1/2)ρ̇/ρ, it must be gauge-invariant: a ′ = a.

From this one easily determines how the coefficients and the field A transform under
N :

ν ′
1 =

ν1

Λ
, ν ′

2 = − γ

2Λ
ν1 + ν2 , A ′ = A− ν1

Λ
∇θ . (2.4)

As expected, the combination

j gi = ν1 ĵ + ν2∇ρ + ρA (2.5)

is gauge-invariant: recall that j gi = −J/2 , where J is the usual gauge-invariant current
obeying ρ̇ = −∇ · J. The easiest way to calculate the remaining gauge-transformed
quantities is to use the equation

b ′ = Λb− γa− θ̇ , (2.6)

obtained from transforming Eq. (1.4). By equating the coefficients of like terms, one finds

µ ′
1 = − γ

Λ
ν1 + µ1 , µ ′

2 =
γ2

2Λ
ν1 − γν2 −

γ

2
µ1 + Λµ2 ,

µ ′
3 =

µ3

Λ
, µ ′

4 = − γ
Λ
µ3 + µ4 , µ ′

5 =
γ2

4Λ
µ3 −

γ

2
µ4 + Λµ5 ,

(2.7)

while the transformation laws for the external vector fields are

A ′
1 = ΛA1 − γA − γ

2
A2 +

(
γ

Λ
ν1 − µ1 +

γ

Λ
µ3 − µ4

)
∇θ ,

A ′
2 = A2 −

2µ3

Λ
∇θ .

(2.8)

The transformation of U is rather more complicated, and best understood by making use
of some explicitly gauge-invariant parameters; we shall return to it shortly.

Next let us write a complete set of gauge invariants for the above system. Recall
that the gauge-invariant quantities, not the original coefficients, must be the physically
measurable entities in situations to be described by the nonlinear Schrödinger equations.
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Since the 2-parameter subgroup indexed by Λ and γ acts on the 7-parameter space of
coefficients, we must have 5 independent gauge-invariant parameters τj . We also have a
gauge-invariant (magnetic) field B :

τ1 = ν2 −
1
2
µ1 , τ2 = ν1µ2 − ν2µ1 , τ3 =

µ3

ν1
, τ4 = µ4 − µ1

µ3

ν1
,

τ5 = ν1µ5 − ν2µ4 + ν 2
2

µ3

ν1
, B = ∇×A .

(2.9)

But we can write in addition two new gauge-invariant combinations of the fields A, A1,
and A2, as follows:

A gi
1 = ν1A1 +

(
2ν2µ3

ν1
− µ1 − µ4

)
A − ν2A2 ,

A gi
2 =

ν1

2µ3
A2 −A .

(2.10)

In discussions elsewhere it has been noted that τ2 is related to the observed value of h̄/m,
and that nonzero values of τ1 and τ4, break time-reversal invariance while the parameters
τ3 6= −1 or τ4 6= 0 break Galileian invariance. For time-reversal and Galileian invariant
theories, ι5 = (1/2)τ2 + τ5 6= 0 characterizes the deviation from linearizability. Here we
observe further that the external fields B and A gi

2 change sign under time reversal, while
the field A gi

1 does not. For the usual linear Schrödinger equation A gi
1 and A gi

2 are zero,
and this value is not changed by gauging.

To return to our discussion of the scalar potential, it is helpful to rewrite Eq. (1.4) in
terms of the gauge-invariant current j gi , the gauge-invariant fields A gi

1 and A gi
2 , and

(as far as possible) the gauge-invariant parameters τj . We obtain

i
ψ̇

ψ
= i

∇ · j gi

ρ
+

1
ν1

[
µ1

∇ · j gi

ρ
+ τ2

∇ 2ρ

ρ
+ τ3

(j gi) 2

ρ2
+ (τ4 − 2τ1τ3)

j gi · ∇ρ
ρ2

+

τ5
(∇ρ)2

ρ2

]
+

1
ν1

[
∇ · (A gi

1 (x, t)ρ)
ρ

+ 2τ3
A gi

2 (x, t) · j gi

ρ
− Û(x, t)

]
,

(2.11)

where

Û = − ν1 U + τ3A 2 − µ4∇ · A + 2τ3A · A2 − 2 τ3 ν2∇ · A2 . (2.12)

In the case of the usual linear Schrödinger equation, Û = (e/2m)Φ. Now Eq. (2.6),
combined with the first transformation in Eqs. (2.7), gives us the rule

(ν1 b + µ1 a) ′ = (ν1 b + µ1 a) −
ν1

Λ
θ̇ ; (2.13)

applying this to Eq. (2.11) immediately yields the transformed scalar potential field,

Û ′ = Û +
ν1

Λ
θ̇ . (2.14)

Thus, A and Û continue to transform according to the usual gauge transformations of
electromagnetism, but with a coefficient ν1/Λ . We have the gauge-invariant (electric)
field,

E = −∇Û − ∂A
∂t

. (2.15)
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In short, it is fully consistent with any member of our family of nonlinear Schrödinger
equations to introduce external electromagnetic fields. Defining A and Φ so that A =
(e/2mc)A and Û = (e/2m)Φ , Maxwell’s equations are unchanged for the corresponding
gauge-invariant electromagnetic fields B = ∇×A and E = −∇Φ − (1/c)(∂A/∂t) . The
coupled Schrödinger-Maxwell theory extends fully to the new class of nonlinear quantum-
mechanical time evolutions, and the whole theory gauges. This analysis appears to confirm
the correctness of our interpretation of nonlinear gauge transformations in relation to
measurement [4, 5], when the quantum particle is interacting with external fields.

3 Time-Dependent Nonlinear Gauge Transformations

In joint work with Doebner and Nattermann [9], we demonstrate through careful analysis
of the underlying physical assumptions that the proper class of nonlinear gauge transfor-
mations for quantum mechanics includes the case where Λ and γ depend on t (though
these parameters cannot depend on x ). With γ = γ(t) and Λ = Λ(t), the coefficients νj

and µj in Eq. (1.4) must of course be time-dependent. In addition, we show that the class
of nonlinear Schrödinger equations must be extended to include two additional terms on
the right-hand side of Eq. (1.4):

α1 ln ρ + α2 S , (3.1)

where α1 and α2 are real, time-dependent coefficients. These are respectively the nonlinear
terms proposed by Bialynicki-Birula and Mycielski (BM) [10] and by Kostin (K) [11]. The
relation of (BM) terms, (K) terms, and the terms in Eq. (1.4) with the separation property
for N -particle hierarchies in quantum mechanics, has been examined in joint work with
Svetlichny [12]. The present result sheds light on the proper physical interpretation.

Now Eq. (2.13) becomes

(ν1 b + µ1 a) ′ = (ν1 b + µ1 a) −
ν1

Λ
θ̇ − ν1

γ̇

2Λ
ln ρ − ν1

Λ̇
Λ
S , (3.2)

which yields the transformations

α ′
1 = Λα1 −

γ

2
α2 +

1
2

(
Λ̇
Λ
− γ̇

)
,

α ′
2 = α2 −

Λ̇
Λ
.

(3.3)

New gauge-invariants are

β1 = ν1 α1 − ν2 α2 + ν2
ν̇1

ν1
− ν̇2 , β2 = α2 −

ν̇1

ν1
. (3.4)

Note that β2 changes sign under time-reversal, while β1 does not. In addition, Eq. (2.14)
is changed; it becomes

Û ′ = Û +
ν1

Λ
θ̇ +

ν1

Λ
α2 θ − ν1

Λ̇
Λ2

θ , (3.5)
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so that we must also change the definition of the gauge-invariant electric field:

E = −∇Û − ∂A
∂t

− β2A . (3.6)

Then Maxwell’s equations remain linear, but the equation for ∇×E is modified in an
interesting way when β2 6= 0. It becomes

∇×E = − ∂B
∂t

− β2 B , (3.7)

while the other three Maxwell equations are unchanged. The physical interpretation of
this system in relation to Kostin’s equation is a subject of our current research.
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