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Abstract

The algebra AP (1,3) invariants were found. These invariants allowed to reduce the
Born-Infeld equation. After the reduction some solutions of the equation were found.

Let us consider the Born-Infeld equation

(1 —uyu”) Ou + u''u"uy, = 0; (1)
where v = u(x); © = (2o, 21,22); v, = AT — 0®u__. ut = gy g0 = —gll =
) 0, L1,L2);, Uy 3?“7 72 ma 12

—g?2 =1,¢g" =0 for p # v, p,v =0,2. We suppose a summation over repeated indices
in formula (1) and further.

The extended Poincaré algebra AP (1,3) is a maximal invariance Lie algebra for equa-
tion (1) [1]. The basis operators of the algebra are following;:

0
Oa =5 Jap = 240p — 2504, D = 2404, (2)
TA
where 4 = g4Bzp; A,B =0,3; x3 = u; ¢*P is the metrical tensor of space Ry 3 with
the signature (4, —, —, —).

The symmetry of one- and many-dimensional equation (1) was researched in the ar-
ticles [1-4]. The symmetry properties of the current equation were particularly used for
determination for its precise solution.

Here the full set of algebra (2) invariants in two-dimensional case is used for reduction
of equation (1) to a partial differential equation with two variables and is given further as
Table. We used the following notation in Table:

axr = CLA.%‘A = gABCLAxB = apxro — a1xr1 — ayxy — a3x3;
2?2 =z 424 = ¢"Prgap = R g

d=-v=-=-d*=1, a=a—-d, B=a+d,

ab=ac=ad=bc=bd=cd=0; k,I,m,n are constants; A,B =0,3.

The algebra representation (2) gives us that the invariant solutions of equation (1)
should have the following form

z = (P(waw)7 (3)

where w = w(xg, z1,22,u), w = w(xg,x1,22,u), 2 = 2(xg,x1,x2,u) are current algebra
invariants, ¢ is some new unknown function.
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Table. The Algebra AP (1,3) Invariants
N w w z
1 | m(bx) — k(ax) m(cz) — l(ax) , m(dz) — n(az)
2 b m(be) + (Br)(ex) | 3 (00" ~ (a) (Bo)
3 | m(ex)+ k(bx) (ax)(Bx) m ln % + bz
4 | k(ax)—m(bx) (ca:)2 + (dz)? m arctan % —ax
62 4 k(b)x
L oL T 1-kK 1+k
6 o W ; (0437) (Bz) *
cx 2(az)  (bx) bx
7 Be o (Ga)? LIRS
8 b o tan 2 + L 1n (az)
ar (%%22 arctan —— + — In (az
9 o (b2)? Bx —mln (bx)
10 br e b
ax ax a
11 (ox)eP* [(bx)2 + (Czw)Q] e P m arctan 5 — Bz
12 | (az)t=F(Bz)t" (CX;)UW arctan % 71 %

If we substitute the formula (3) in equation (1), we get the new equation:

[(Maw)? —

|(Maw?)? -

MAMAwaB} Poww + 2 [MAwAMBwB

- MAMAWBwB} Powwt

MAMAwaB] Puww + [MAMBwAB - MAMADw] ot

{MAMBUJAB - MAMADw} Y + MaMAOz — MAMPB 245 = 0;

where My = wapy, + wapw —
9w

S5 PAB =

0xA0xRB AB

WAB =

A, B=0,3.

If w, w, and z have values from Table then the function ¢ is a solution of the partial

A5 WA= 5 WA =
0%z
0xA0xRB

ow

. _ ,AB
7Dw_g

differential equation in one of the following cases:

ow 0z
0x4

§ ZA = 53 WAB =
I 8:1;14’

. _ ,AB . _ ,AB
WAB; Ow = g WAB; Uz = g

1) [0180%(; - 2C4S0w + CQ] Pow T 2 [_Clgow@w + c40u + 50w + Cﬁ] Powt

[01903) - 2C5§0w + 63} Puww

where ¢; = k2 + 12 —m?, co = k> +n? —m?, cg =n? + 12 — m?,
2) W290ww + 2w [w - (m2 + WQ)‘Pw} Pow + [w2 + (m2 + WZ) (wz + 2(wepw — 90))} Puwwt
(2m? + w?)p

fu—4w<pw—4w<pw—w2+4g0:0;

cy = nl, c5 = nk, cg = kl.
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2
dw(m? + k)2 — m?(m2 + k%) —m?| oy + 8w {k‘ — (m? + k:2)<pw} PwPuwwt

3)

[4w(m? + k)2, — 8kwip,, + 4w + m?)| puut

2m? |
[4(7”2 + kQ)SOE; — 8kpw — Y +4| oy =05

2
4) [4w(k2 - m2)(p121)+(k2 - m2) (TZ] + 1) +k2 ¢ww+8’w {(m2 - k2)cpw - k] @w@ww‘F

[4w(k:2 — mQ)QOZ, + 8wk, — 4(m2 + w)} Ouwwt
2 2\ 2 3 6m?
4(k* — m*) @l pw — 8wy, + 8k, pw — —— 4 ou=0;

5) {mQ +w — 4@&} Gww + 80w (Pw — M) Puw + +4 [w + 2mep, — goi] Puww + 60y = 05
2
6) [w(oﬂ —w+ 1) — 20(1 +wpy, + (1 —52)(1+w2)¢

w

Jour

1
2 {w(w —w? = Dguipw + (1 + w?)pu — 2pwwipn + Swe*(1 - fﬁz)] Pt
[w(w2 —w+ 1)@3 + dpwwe,, + 4g02 (w(l — /42) + /@2” Owwt

5
(W? + Sw + Dpdpw + 2wwpupy, — 4w(l+5w)ey, + (12 = 1) (1 + “2)%"3*

2
40p(K? = 1) pupw + 202w + 8w — 262 + 3)p2 +
2 3
w
201 - 1) 520, + 21— )1 - 3wp) o, +2(1 - ) 55 =0

1 1 1 w
7) {(wQ —w+1)ph — ~ou — 4} o + [2(w —w? = Do + ~u = chw] ot

% 1 1
[(wQ —w el + et - w} P + 5 PoPw + WPt

1
2(w — 1)) + ;wi — 204 = 0;

8) |4w(w? +w —1)p? +é(w2+w_1)<pw+i+l_7w2
v K2 witw-—1

Puwwt
KR

1 1 w
1 w
2 2 2\ 2
4 [w(w +w—1)p;,+ (1 —w) (FLQ + w?—i—w—lﬂ Puw +2(1 — W)L ow—

1+2w? 5, 4w
-, +

w

8ww<,pw<,0121]+8(1—w)(1 —2w)g0,31} ?(1 —2W)Pupwt

12 2w 6 14w 1

—(1 — 2 _ — | — - I —— T
K( )P W w17 <m2+w2+w—1)(pw k(w? +w —1) ’
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2

m
P+ (1) — 2

4 Puww + [2w290w90w + (w2 +1- mw)%u*

9)

2ww] P + {—ngoi + 2wwep, +1 — 2mw} Owwt+
w
2

m

. 02 — 2wpn, — Mgy, = 0;

Papw —
10) [(@?+w? = )¢ — 2w0ppy+w? +¢7 —1] Quut2 [(1 - 0? = W) pupu + wepat

WPPu + W] P + (@7 + w? = 1) = 2w, +w? + 9% = 1] Py = 0

2
wim
11)  |dwwed, + - 1] Purw + Aw(1 — 200 ) PuPurw + [4ww¢3, — dwep,, + mﬂ Puwt

m? m(m + 2
8wl + wplpw + 2wy = 3¢ = dpupu + i + (2w)s0w = 0;
2 2 2 2 w(w + K* — 2)
12) 2w (w — 1)(k"w — 1) + 26w (w — 1)@y + w1 Guow+
2 2 2 2—w
2 207(1 — w) (KW — 1)Puwipw+rw (1 — )Py +rww(l — w)‘Pw‘f‘m Puwt

[2w2(w — 1) (K*w — 1)p2 + 2kww(w — 1), + %(w - 2)] Cuw + (K2 — w2+

wi(wr? + 3w + k2 = 5)2 0w + w(w — 1)(2x% — 3w + 1)pLp2 +
w(w = 1)(w = 2)gy, + el — k(3w — 1)pupu+

w(2k? + 3w — 5) w
Aw—1) 7 4w-1)

pw = 0.

Let us determine some solution of the new reduced partial differential equations.
The equation (2) has a following solution

2 2,2
o= (5)
where m is constant. We will find a solution of equation (5) in the following form
¢ = B(w)w + C(w) (6)
If we substitute (6) in to equation (5), we get a system of equations.
8BB? — 8mB? + B(—4B? + 8mB + 4w) + 6B = 0, (7)
8BCB — 8mCB + C(—4B% 4+ 8mB + 4w) + 6C = 0. (8)

It is obviously that any constant function is a solution of equation (7), i.e., B = Cy. So
we have got from (8) a following equation for determining the function C(w):

Clw+C)+C=0,
then

C(w) = Ceexp (/f(w)dw) ,
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where function f(w) is a solution of the equation f’+ f2+ = 0; C5 is an arbitrary

w+ Cq
constant. In this way the solution of equation (5) is the following function:

¢ = Ciw + Caexp (/ f(w)dw) . 9)
The equation (9) has the following solution
p = 201w — Clw + O, (10)

where C1, Cy are constants.
At last we are able to determine the solution of equation (1) by using the algebra
invariants and the solutions of equations (5), (9) and (10):

1. (Bz)(cz)? + 2m(bz)(cx) + 2m2(bz) — m?(Bz) = 0;

(B)?
3

2.

+ K(5)(B2) + K () — i (blex) — m(5z)) ~ Coexp ( [ flw)dw) =0

where f is a solution of the equation f’ + f2 + chl =0;

3. m(bx)*In(bz) — (Bx)(bx)* 4+ Cz(bx)* 4 2C (cx)(ba) — CE(ax) = 0.

Let us remind that the desired function u = u(xg, 1, z2) is implicit as the last coordinate
of the vector x, € Ri43.
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