The Algebra $A\tilde{P}(1,3)$ Invariants and Their Application to the Theory of Born-Infeld Field

Iryna A. MISHCHENKO

The Technical University, Pershotravnevyj prospect, 24, Poltava, Ukraïna

Abstract

The algebra AP(1,3) invariants were found. These invariants allowed to reduce the Born-Infeld equation. After the reduction some solutions of the equation were found.

Let us consider the Born-Infeld equation

$$(1 - u_{\nu}u^{\nu}) \Box u + u^{\mu}u^{\nu}u_{\mu\nu} = 0; \tag{1}$$

where u = u(x); $x = (x_0, x_1, x_2)$; $u_{\mu} = \frac{\partial u}{\partial x_{\mu}}$; $u_{\mu\nu} = \frac{\partial^2 u}{\partial x_{\mu} \partial x_{\nu}}$; $u^{\mu} = g^{\mu\nu} u_{\nu}$; $g^{00} = -g^{11} = -g^{22} = 1$, $g^{\mu\nu} = 0$ for $\mu \neq \nu$, $\mu, \nu = \overline{0, 2}$. We suppose a summation over repeated indices in formula (1) and further.

The extended Poincaré algebra $A\tilde{P}(1,3)$ is a maximal invariance Lie algebra for equation (1) [1]. The basis operators of the algebra are following:

$$\partial_A = \frac{\partial}{\partial x_A}, \ J_{AB} = x^A \partial_B - x^B \partial_A, \ D = x_A \partial_A,$$
 (2)

where $x^A = g^{AB}x_B$; $A, B = \overline{0,3}$; $x_3 \equiv u$; g^{AB} is the metrical tensor of space R_{1+3} with the signature (+, -, -, -).

The symmetry of one- and many-dimensional equation (1) was researched in the articles [1–4]. The symmetry properties of the current equation were particularly used for determination for its precise solution.

Here the full set of algebra (2) invariants in two-dimensional case is used for reduction of equation (1) to a partial differential equation with two variables and is given further as Table. We used the following notation in Table:

$$ax = a_A x^A = g^{AB} a_A x_B = a_0 x_0 - a_1 x_1 - a_2 x_2 - a_3 x_3;$$

 $x^2 = x_A x^A = g^{AB} x_A x_B = x_0^2 - x_1^2 - x_2^2 - x_3^2;$
 $a^2 = -b^2 = -c^2 = -d^2 = 1, \quad \alpha = a - d, \quad \beta = a + d;$
 $ab = ac = ad = bc = bd = cd = 0; \quad k, l, m, n \text{ are constants; } A, B = \overline{0, 3}.$

The algebra representation (2) gives us that the invariant solutions of equation (1) should have the following form

$$z = \varphi(\omega, w),\tag{3}$$

where $\omega = \omega(x_0, x_1, x_2, u)$, $w = w(x_0, x_1, x_2, u)$, $z = z(x_0, x_1, x_2, u)$ are current algebra invariants, φ is some new unknown function.

Copyright © 1997 by Mathematical Ukraina Publisher. All rights of reproduction in any form reserved. I. MISHCHENKO

Table. The Algebra $A\tilde{P}(1,3)$ Invariants

N	ω	w	z
1	m(bx) - k(ax)	m(cx) - l(ax)	m(dx) - n(ax)
2	βx	$m(bx) + (\beta x)(cx)$	$\frac{1}{2}(bx)^2 - (ax)(\beta x)$
3	m(cx) + k(bx)	$(\alpha x)(\beta x)$	$\frac{2}{2} \ln \frac{\alpha x}{\beta x} + bx$
4	k(ax) - m(bx)	$(cx)^2 + (dx)^2$	$m \arctan \frac{cx}{dx} - ax$
5	$k(cx) - m(\beta x)$	$(\beta x)^2 + 2k(bx)$	$ \begin{vmatrix} \frac{(\beta x)^3}{3} + k(bx) \times \\ \times (\beta x) + k^2(ax) \end{vmatrix} $
6	$\frac{bx}{cx}$	$\frac{(\alpha x)(\beta x)}{(cx)^2}$	$(\alpha x)^{1-\kappa}(\beta x)^{1+\kappa}$
7	$\frac{cx}{\beta x}$	$\frac{2(ax)}{\beta x} - \frac{(bx)^2}{(\beta x)^2}$	$\frac{1}{\kappa}\ln\left(\beta x\right) + \frac{bx}{\beta x}$
8	$\frac{bx}{ax}$	$\frac{x^2}{(ax)^2}$	$\arctan \frac{cx}{dx} + \frac{1}{\kappa} \ln (ax)$
9	$\frac{cx}{bx}$	$\frac{\alpha x}{(bx)^2}$	$\beta x - m \ln (bx)$
10	$\frac{bx}{ax}$	$\frac{cx}{ax}$	$\frac{bx}{ax}$
11	$(\alpha x)e^{-\beta x}$	$\left[(bx)^2 + (cx)^2 \right] e^{-\beta x}$	$m \arctan \frac{ax}{cx} - \beta x$
12	$(\alpha x)^{1-\kappa} (\beta x)^{1+\kappa}$	$\frac{x^2}{(\alpha x)(\beta x)}$	$\arctan \frac{cx}{bx} + \frac{1}{2} \ln \frac{\alpha x}{\beta x}$

If we substitute the formula (3) in equation (1), we get the new equation:

$$\left[(M_A \omega^A)^2 - M_A M^A \omega_B \omega^B \right] \varphi_{\omega\omega} + 2 \left[M_A \omega^A M_B w^B - M_A M^A \omega_B w^B \right] \varphi_{\omega w} + \\
\left[(M_A w^A)^2 - M_A M^A w_B w^B \right] \varphi_{ww} + \left[M^A M^B \omega_{AB} - M_A M^A \Box \omega \right] \varphi_{\omega} + \\
\left[M^A M^B w_{AB} - M_A M^A \Box w \right] \varphi_w + M_A M^A \Box z - M^A M^B z_{AB} = 0;$$
(4)

where
$$M_A = \omega_A \varphi_\omega + w_A \varphi_w - z_A$$
; $\omega_A = \frac{\partial \omega}{\partial x_A}$; $w_A = \frac{\partial w}{\partial x_A}$; $z_A = \frac{\partial z}{\partial x_A}$; $\omega_{AB} = \frac{\partial^2 \omega}{\partial x_A \partial x_B}$; $w_{AB} = \frac{\partial^2 w}{\partial x_A \partial x_B}$; $z_{AB} = \frac{\partial^2 z}{\partial x_A \partial x_B}$; $z_{AB} = \frac{\partial z}{\partial x_A \partial x_B}$; $z_{AB} = \frac$

If ω , w, and z have values from Table then the function φ is a solution of the partial differential equation in one of the following cases:

1)
$$\left[c_1\varphi_w^2 - 2c_4\varphi_w + c_2\right]\varphi_{\omega\omega} + 2\left[-c_1\varphi_\omega\varphi_w + c_4\varphi_\omega + c_5\varphi_w + c_6\right]\varphi_{\omega w} + \left[c_1\varphi_\omega^2 - 2c_5\varphi_\omega + c_3\right]\varphi_{ww} = 0;$$

where
$$c_1 = k^2 + l^2 - m^2$$
, $c_2 = k^2 + n^2 - m^2$, $c_3 = n^2 + l^2 - m^2$, $c_4 = nl$, $c_5 = nk$, $c_6 = kl$.

2)
$$\omega^{2}\varphi_{\omega\omega} + 2\omega \left[w - (m^{2} + \omega^{2})\varphi_{w} \right] \varphi_{\omega w} + \left[w^{2} + (m^{2} + \omega^{2}) \left(\omega^{2} + 2(\omega\varphi_{\omega} - \varphi) \right) \right] \varphi_{ww} + (2m^{2} + \omega^{2})\varphi_{w}^{2} - 4\omega\varphi_{\omega} - 4w\varphi_{w} - \omega^{2} + 4\varphi = 0;$$

3)
$$\left[4w(m^{2}+k^{2})\varphi_{w}^{2} - \frac{m^{2}}{w}(m^{2}+k^{2}) - m^{2}\right]\varphi_{\omega\omega} + 8w\left[k - (m^{2}+k^{2})\varphi_{\omega}\right]\varphi_{w}\varphi_{\omega w} + \left[4w(m^{2}+k^{2})\varphi_{\omega}^{2} - 8kw\varphi_{\omega} + 4(w+m^{2})\right]\varphi_{ww} + \left[4(m^{2}+k^{2})\varphi_{\omega}^{2} - 8k\varphi_{\omega} - \frac{2m^{2}}{w} + 4\right]\varphi_{w} = 0;$$

4)
$$\left[4w(k^2 - m^2)\varphi_w^2 + (k^2 - m^2)\left(\frac{m^2}{w} + 1\right) + k^2 \right] \varphi_{\omega\omega} + 8w \left[(m^2 - k^2)\varphi_\omega - k \right] \varphi_w \varphi_{\omega w} + \left[4w(k^2 - m^2)\varphi_\omega^2 + 8wk\varphi_\omega - 4(m^2 + w) \right] \varphi_{ww} + 4(k^2 - m^2)\varphi_\omega^2 \varphi_w - 8w\varphi_w^3 + 8k\varphi_\omega \varphi_w - \left(\frac{6m^2}{w} + 4\right) \varphi_w = 0;$$

5)
$$\left[m^2 + w - 4\varphi_w^2\right]\varphi_{\omega\omega} + 8\varphi_w(\varphi_\omega - m)\varphi_{\omega\omega} + 44\left[w + 2m\varphi_\omega - \varphi_\omega^2\right]\varphi_{ww} + 6\varphi_w = 0;$$

6)
$$\left[w(\omega^{2}-w+1)\varphi_{w}^{2}-2\varphi(1+\omega^{2})\varphi_{w}+(1-\kappa^{2})(1+\omega^{2})\frac{\varphi^{2}}{w}\right]\varphi_{\omega\omega}+$$

$$2\left[w(w-\omega^{2}-1)\varphi_{\omega}\varphi_{w}+\varphi(1+\omega^{2})\varphi_{\omega}-2\varphi_{\omega}w\varphi_{w}+\frac{1}{2}\omega\varphi^{2}(1-\kappa^{2})\right]\varphi_{\omega w}+$$

$$\left[w(\omega^{2}-w+1)\varphi_{\omega}^{2}+4\varphi_{\omega}w\varphi_{\omega}+4\varphi^{2}\left(w(1-\kappa^{2})+\kappa^{2}\right)\right]\varphi_{ww}+$$

$$(\omega^{2}+\frac{5}{2}\omega+1)\varphi_{\omega}^{2}\varphi_{w}+2\omega w\varphi_{\omega}\varphi_{w}^{2}-4w(1+5w)\varphi_{w}^{3}+(\kappa^{2}-1)(1+\omega^{2})\frac{\varphi}{w}\varphi_{\omega}^{2}+$$

$$4\omega\varphi(\kappa^{2}-1)\varphi_{\omega}\varphi_{w}+2\varphi(2w\kappa^{2}+8w-2\kappa^{2}+3)\varphi_{w}^{2}+$$

$$2(1-\kappa^{2})\frac{\varphi^{2}\omega}{w}\varphi_{\omega}+2(1-\kappa^{2})(1-3w\varphi)\frac{\varphi}{w}\varphi_{w}+2(1-\kappa^{2})\frac{\varphi^{3}}{w^{3}}=0;$$

7)
$$\left[(\omega^2 - w + 1)\varphi_w^2 - \frac{1}{\kappa}\varphi_w - \frac{1}{4} \right] \varphi_{\omega\omega} + \left[2(w - \omega^2 - 1)\varphi_\omega\varphi_w + \frac{1}{\kappa}\varphi_\omega - \frac{\omega}{\kappa}\varphi_w \right] \varphi_{\omega w} + \left[(\omega^2 - w + 1)\varphi_\omega^2 + \frac{2\omega}{\kappa}\varphi_\omega + \frac{1}{\kappa^2} + 1 - w \right] \varphi_{ww} + \frac{1}{2}\varphi_\omega^2\varphi_w + \omega\varphi_\omega\varphi_w^2 + 2(w - 1)\varphi_w^3 + \frac{1}{\kappa}\varphi_w^2 - 2\varphi_w = 0;$$

$$8) \left[4w(\omega^{2} + w - 1)\varphi_{w}^{2} + \frac{4}{\kappa}(\omega^{2} + w - 1)\varphi_{w} + \frac{1}{\kappa^{2}} + \frac{1 - \omega^{2}}{\omega^{2} + w - 1} \right] \varphi_{\omega\omega} + 4w + 4 \left[2w(1 - \omega^{2} - w)\varphi_{\omega}\varphi_{w} + \frac{1}{\kappa}(1 - \omega^{2} - w)\varphi_{\omega} - \omega\left(\frac{1}{\kappa^{2}} + \frac{w}{\omega^{2} + w - 1}\right) \right] \varphi_{\omega w} + 4 \left[w(\omega^{2} + w - 1)\varphi_{\omega}^{2} + (1 - w)\left(\frac{1}{\kappa^{2}} + \frac{w}{\omega^{2} + w - 1}\right) \right] \varphi_{ww} + 2(1 - \omega^{2})\varphi_{\omega}^{2}\varphi_{w} - 8\omega w\varphi_{\omega}\varphi_{w}^{2} + 8(1 - w)(1 - 2w)\varphi_{w}^{3} - \frac{1 + 2\omega^{2}}{\kappa}\varphi_{\omega}^{2} + \frac{4\omega}{\kappa}(1 - 2w)\varphi_{\omega}\varphi_{w} + \frac{12}{\kappa}(1 - w)\varphi_{w}^{2} - \frac{2\omega}{\omega^{2} + w - 1}\varphi_{\omega} - \left(\frac{6}{\kappa^{2}} + \frac{1 + w}{\omega^{2} + w - 1}\right)\varphi_{w} - \frac{1}{\kappa(\omega^{2} + w - 1)} = 0;$$

I. MISHCHENKO

9)
$$\left[-w^2 \varphi_w^2 + (mw - \omega^2 - 1)\varphi_w - \frac{m^2}{4} \right] \varphi_{\omega\omega} + \left[2w^2 \varphi_\omega \varphi_w + (\omega^2 + 1 - mw)\varphi_\omega - 2\omega w \right] \varphi_{\omega w} + \left[-w^2 \varphi_\omega^2 + 2\omega w \varphi_\omega + 1 - 2mw \right] \varphi_{ww} + \frac{w}{2} \varphi_\omega^2 \varphi_w - \frac{m}{4} \varphi_\omega^2 - 2w \varphi_w^2 - m \varphi_w = 0;$$

10)
$$\left[(\omega^2 + w^2 - 1)\varphi_w^2 - 2w\varphi\varphi_w + \omega^2 + \varphi^2 - 1 \right] \varphi_{\omega\omega} + 2 \left[(1 - \omega^2 - w^2)\varphi_\omega\varphi_w + w\varphi\varphi_\omega + \omega\varphi\varphi_w + \omega w \right] \varphi_{\omega w} + \left[(\omega^2 + w^2 - 1)\varphi_\omega^2 - 2\omega\varphi\varphi_\omega + w^2 + \varphi^2 - 1 \right] \varphi_{ww} = 0;$$

11)
$$\left[4\omega w\varphi_w^2 + \frac{\omega m^2}{w} - 1\right]\varphi_{\omega\omega} + 4w(1 - 2\omega\varphi_\omega)\varphi_w\varphi_{\omega w} + \left[4\omega w\varphi_\omega^2 - 4w\varphi_\omega + m^2\right]\varphi_{ww} + 3\omega\varphi_\omega^3 + \omega\varphi_\omega^2\varphi_w + 2w\varphi_w^3 - 3\varphi_\omega^2 - 4\varphi_\omega\varphi_w + \frac{m^2}{w}\varphi_\omega + \frac{m(m+2)}{2w}\varphi_w = 0;$$

12)
$$\left[2\omega^{2}(w-1)(\kappa^{2}w-1)\varphi_{w}^{2} + 2\kappa\omega^{2}(w-1)\varphi_{w} + \frac{\omega^{2}(w+\kappa^{2}-2)}{2(w-1)} \right] \varphi_{\omega\omega} +$$

$$2 \left[2\omega^{2}(1-w)(\kappa^{2}w-1)\varphi_{\omega}\varphi_{w} + \kappa\omega^{2}(1-w)\varphi_{\omega} + \kappa\omega w(1-w)\varphi_{w} + \frac{2-w}{8(w-1)} \right] \varphi_{\omega\omega} +$$

$$\left[2\omega^{2}(w-1)(\kappa^{2}\omega-1)\varphi_{\omega}^{2} + 2\kappa\omega w(w-1)\varphi_{\omega} + \frac{w}{2}(w-2) \right] \varphi_{ww} + (\kappa^{2}-1)\omega^{3}\varphi_{\omega}^{3} +$$

$$\omega^{2}(w\kappa^{2}+3w+\kappa^{2}-5)\varphi_{\omega}^{2}\varphi_{w} + \omega(w-1)(2\kappa^{2}-3w+1)\varphi_{\omega}\varphi_{w}^{2} +$$

$$w(w-1)(w-2)\varphi_{w}^{2} + \kappa\omega^{2}\varphi_{\omega}^{2} - \kappa\omega(3w-1)\varphi_{\omega}\varphi_{w} +$$

$$\frac{\omega(2\kappa^{2}+3w-5)}{4(w-1)}\varphi_{\omega} - \frac{w}{4(w-1)}\varphi_{w} = 0.$$

Let us determine some solution of the new reduced partial differential equations.

The equation (2) has a following solution

$$\varphi = \frac{w^2 - m^2 \omega^2}{2m^2},\tag{5}$$

where m is constant. We will find a solution of equation (5) in the following form

$$\varphi = B(w)\omega + C(w) \tag{6}$$

If we substitute (6) in to equation (5), we get a system of equations.

$$8B\dot{B}^2 - 8m\dot{B}^2 + \ddot{B}(-4B^2 + 8mB + 4w) + 6\dot{B} = 0, (7)$$

$$8B\dot{C}\dot{B} - 8m\dot{C}\dot{B} + \ddot{C}(-4B^2 + 8mB + 4w) + 6C = 0.$$
(8)

It is obviously that any constant function is a solution of equation (7), i.e., $B = C_1$. So we have got from (8) a following equation for determining the function C(w):

$$\ddot{C}(w+C_1)+C=0,$$

then

$$C(w) = C_2 \exp\left(\int f(w) dw\right),$$

where function f(w) is a solution of the equation $f' + f^2 + \frac{1}{w + C_1} = 0$; C_2 is an arbitrary constant. In this way the solution of equation (5) is the following function:

$$\varphi = C_1 \omega + C_2 \exp\left(\int f(w) dw\right). \tag{9}$$

The equation (9) has the following solution

$$\varphi = 2C_1\omega - C_1^2w + C_2, (10)$$

where C_1 , C_2 are constants.

At last we are able to determine the solution of equation (1) by using the algebra invariants and the solutions of equations (5), (9) and (10):

1.
$$(\beta x)(cx)^2 + 2m(bx)(cx) + 2m^2(bx) - m^2(\beta x) = 0;$$

2.
$$\frac{(\beta x)^3}{3} + k(bx)(\beta x) + k^2(ax) - C_1(k(cx) - m(\beta x)) - C_2 \exp\left(\int f(w)dw\right) = 0;$$

where f is a solution of the equation $f' + f^2 + \frac{1}{w+C_1} = 0$;

3.
$$m(bx)^2 \ln(bx) - (\beta x)(bx)^2 + C_2(bx)^2 + 2C_1(cx)(bx) - C_1^2(\alpha x) = 0.$$

Let us remind that the desired function $u = u(x_0, x_1, x_2)$ is implicit as the last coordinate of the vector $x, x \in R_{1+3}$.

References

- [1] Fushchych W.I., Serov N.I., About some exact solutions of many-dimensional nonlinear Euler-Lagrange equation, *Doklady AN SSSR*, 1984, V.278, N 4, 847–851.
- [2] Fushchych W.I., Serov N.I., About exact solutions of Born-Infeld equation, Doklady AN SSSR, 1981, V.263, N 3, 582–586.
- [3] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Dordrecht, Kluwer Academic Publishers, 1993.
- [4] Serov N.I., Reduction and exact solutions of one-dimensional Born-Infeld equation, Doklady AN USSR, 1991, N 10, 26–28.