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Abstract

New soliton-like spherically symmetric solutions for nonlinear generalizations of the
Schrödiner equation are constructed. A new nonlinear projective invariant Schrödiner
equation is suggested and formulae of multiplication of its solutions are found.

1 Introduction

At the present time there are no efficient analytic methods for solving nonlinear partial
differential equations (PDEs). Construction of particular exact solutions to these equations
remains an important problem. Finding exact solutions that have physical interpretation
is of fundamental importance. Soliton solutions seem to be just as needed, since they
describe the movement of a traveling solitary wave.

In many papers (see, for example, [1–4]) there are constructed and investigated soliton–
like ones of the nonlinear Schrödiner equation (NSchE)

iΨt + ∆Ψ + λ|Ψ|2dΨ = 0, (1)

where Ψt = ∂Ψ/∂t,∆ = ∂2/∂(x1)2 + ... + ∂2/∂(xn)2,Ψ = Ψ(t, ~x), ~x = (x1, ..., xn), λ =
const, d ∈ <. But almost all of these solutions are solutions to the one-dimensional NSchEs
(n = 1) or their simple generalizations to the n-dimensional case. For example, the well-
known soliton solution [1]

Ψ = (λ/2)1/2α1
exp[(−iv/2)(x1 + (v/2− 2(α1)2/v)t)]

cos h(α1x1 + α1vt)
(2)

to the NSchE

iΨt + Ψx1x1 + λ|Ψ|2Ψ = 0 (3)

can be generalized to the n-dimensional case by substituting α1x1 →α1x1 + · · · + αnxn,
αa, v ∈ <, a = 1, ..., n. In the case of many-dimensional NSchEs, it is of great importance
to find spherically symmetric solutions (SSSs).

Copyright c© 1997 by Mathematical Ukraina Publisher.

All rights of reproduction in any form reserved.



108 R. CHERNIHA

In the present paper (Section 2) we construct soliton-like SSSs to the NSchEs of the
form

∆Ψ + λh1(|~x|2)|Ψ|2dΨ + αh2(|~x|2)Ψ = 0, (4)

where h1 and h2 are arbitrary differentiable functions, λ and α are constants, d ∈ <,Ψ =
Ψ(~x) and |~x|2 = x2

1 + ... + x2
n.

Note that nonstationary NSchEs of the form

iΨ1,t + ∆Ψ1 + λh1(|~x|2)|Ψ1|2dΨ1 = 0,Ψ1,t = ∂Ψ1/∂t (5)

are reduced, by the substitution

Ψ1(t, ~x) = exp (−iαt)Ψ(~x), (6)

to Eq. (4) for h2 = 1. Consequently, solutions of the NSchEs (5) can be obtained from
those of the stationary NSchE (4) by the substitution (6).

In Section 3 new exact solutions of a NSchE of the form (5) are constructed.
In Section 4 the ansätze to Eq.(4) for obtaining periodic solutions and solutions with

a singularity are presented.

2 Soliton-like solutions of the nonlinear Schrödiner
equations (4)

Since we are constructing spherically symmetric solutions (SSSs), we will always have

Ψ(~x) = φ(|~x|2). (7)

Substituting the ansatz (7) in Eq. (4), we obtain the following nonlinear ordinary diffe-
rential equation (ODE):

4ωφωω + 2nφω + λh1(ω)|φ|2dφ + αh2(ω)φ = 0, ω = |~x|2 (8)

(indices denote derivatives with respect to ω). It is easily seen that the substitution

φ = ρ(ω) exp (iW (ω)), (9)

where ρ and W are real functions, reduces the ODE (8) to the following nonlinear system:
(10)

Wω = cω−n/2ρ−2, c ∈ <, (10a)

4ωρωω + 2nρω + λh1(ω)ρ2d+1 − 4c2ω1−nρ−3 + αh2(ω)ρ = 0. (10b)

In the special case, where

d = −2, h1(ω) = ω1−n, λ = 4c2, h2(ω) = 1,

Eq. (10b) reduces to the Bessel equation, and we obtain its general solution in the form
[6]

ρ(ω) = ω1/2−n/4Zν((αω)1/2), ν = n/2− 1,

W (ω) = c
∫

ω−1[Zν((αω)1/2)]−2dω + c0,
(11)
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where Zν are cylindrical functions.
Thus, the formulas (7), (9), (11) give the family of the SSSs to the NSchE

∆Ψ + λ|~x|2−2n|Ψ|−4Ψ + αΨ = 0. (12)

In the general case the system (10) cannot be integrated. For this reason we will
construct particular exact solutions to this system. Consider the following generalization
of soliton-like solutions:

ρ(ω) = af(ω)[cos h(g(ω))]−1/d, ω = |~x|2, (13)

where f and g are arbitrary twice differentiable real functions except for a finite number
of points, and a is an arbitrary constant.

Note that it is easily seen that the soliton-like solution (2) can be obtained from the
formula (13) for n = 1 and d = 1 if we apply the Galilei transformations (for details see
[3]).

Theorem 1 Let a NSchE be of the form (4). Then

Ψ(|~x|2) = af(|~x|2)
[
cos h (g(|~x|2))

]−1/d
(14)

is a soliton-like SSS of this equation if

f = c1|~x|2−n + c0, n 6= 2 or f = c1 ln |~x|2 + c0, n = 2,

g = c2
∫

ω−n/2f−2dω, ω = |~x|2,

h1 = (1 + d)b2λ−1a−2d|~x|2−2nf−4−2d, h2 = −b2α−1|~x|2−2nf−4,

(15)

where b2 = 4(c2)2/d2, αλ 6= 0, d > 0, c0, c1, c2 ∈ <.

The proof of Theorem 1 is realized in [5].
Remark 1. In case d < 0 the formula (14) gives the solution of the NSchE (4) but it is
not a soliton-like solution.

Consider some examples, which are corollaries of Theorem 1.
Example 1. The case n = 1 (~x = x1). For c1 = 0 (see (15)) we obtain the well–known
soliton–like solution

Ψ = a[cos h(dα1/2x1 + c)]−1/d (16)

of the stationary NSchE

Ψx1x1 + λ|Ψ|2dΨ− αΨ = 0

(indices denote derivatives with respect to x1). Here and subsequently, a2d = (1 +
d)α/λ, α > 0, λ > 0, c ∈ <.

From the solution (16), using the formula (6) for α → −α and the Galilei transforma-
tions [3], it is easily to obtain the following soliton solution:

Ψ = a
exp[(−iv/2)(x1 + (v/2− 2α/v)t)]

[cos h(dα1/2(x1 + vt) + c)]1/d

to the nonstationary NSchE (5) for h1 = 1.
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If c0 = 0 (see (15)), then we obtain the solution

Ψ = ax1[cos h(dα1/2/x1 + c)]−1/d (17)

to the NSchE

Ψx1x1 + λ|x1|−4−2d|Ψ|2dΨ− α|x1|−4Ψ = 0.

Example 2. The case n = 2 (~x = (x1, x2)). For c1 = 0 (see (15)) we obtain the
soliton-like solution

Ψ = a[cos h(dα1/2 ln |~x|+ c)]−1/d (18)

of the stationary NSchE

∆2Ψ + (λ/|~x|2)|Ψ|2dΨ− (α/|~x|2)Ψ = 0,

d being a positive constant.
Example 3. The case n = 3 (~x = (x1, x2, x3)). For c1 = 0 (see (15)) we find the
soliton-like solution

Ψ = a[cos h(d(α/|~x|2)1/2 + c)]−1/d (19)

of the stationary NSchE

∆3Ψ + (λ/|~x|4)|Ψ|2dΨ− (α/|~x|4)Ψ = 0,

d being a positive constant.
In case c0 = 0 we obtain the soliton-like SSS

Ψ = a|~x|−1[cos h (d(α|~x|2)1/2 + c)]−1/d (20)

of the stationary NSchE

∆3Ψ + λ|~x|2d|Ψ|2dΨ− αΨ = 0,

d being a positive constant.
From the solution (20) we can obtain (see (6)) the solution

Ψ1 = a|~x|−1 exp(iαt)[cos h(d(α|~x|2)1/2 + c)]−1/d. (21)

to the nonstationary NSchE

iΨ1,t + ∆3Ψ1 + λ(|~x||Ψ1|)2dΨ1 = 0. (22)

Note that for the solutions (20)–(21) possessing discontinuity at the point |~x|2 = 0 the
integrals are well defined in the vicinity of ~x = 0, since we work in the space <3.
Example 4. The case n = 4 (~x = (x1, x2, x3, x4)). For c1 = 0 (see (15)) we find the
soliton-like solution

Ψ = a[cos h (dα1/2/(2|~x|2) + c)]−1/d (23)

of the NSchE

∆4Ψ + (λ/|~x|6)|Ψ|2dΨ− (α/|~x|6)Ψ = 0,
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d being a positive constant.
In case c0 = 0 we obtain the soliton-like SSS

Ψ = a|~x|−2[cos h(dα1/2|~x|2/2 + c)]−1/d

of the stationary NSchE

∆4Ψ + λ|~x|2+4d|Ψ|2dΨ− α|~x|2Ψ = 0 (24)

d being a positive constant.
Observe that Eq. (24) is a nonlinear generalization of the harmonic oscillator equation

∆Ψ− α|~x|2Ψ = 0.

Remark 2. The ~x = 0 is not a point of discontinuity to the solutions (17)–(19), (23) for
d > 0. So, the integrals are well defined in the vicinity of ~x = 0.

Theorem 1 admits the following generalization [5].

Theorem 2 The soliton-like solution (14) is a solution of the NSchE of the form (4) if

g = c2
∫

ω−n/2f−2dω, ω = |~x|2, (25a)

h1 = (1 + d)b2λ−1a−2d|~x|2−2nf−4−2d, (25b)

h2 = −(αf)−1
[
b2|~x|2−2nf−3 + 4ωfωω + 2nfω

]
, (25c)

where f(|~x|2) is an arbitrary twice differentiable real functions except for a finite number
of points, b2 = 4(c2)2/d2, αλ 6= 0, d > 0, c2 ∈ <.

From Theorem 2 we can obtain the following corollary .
Corollary. The soliton-like solution (14) is a solution of the NSchE of the form

∆Ψ + λh1(|~x|2)|Ψ|2dΨ + αΨ = 0,

if f = Re(−ω)1/2−n/4Zν((αω)1/2), Im(−ω)1/2−n/4Zν((αω)1/2) 6= 0, and the functions g
and h are determined with the help of the formulas (25a), (25b). Here Zν are cylindrical
functions and ν = |n/2− 1|, n = 1, 3, 5...

The proof of this corollary is realized in [5].

3 Soliton-like solutions of nonlinear Schrödiner equations of
the form (5)

The NSchE (22) for d = 2 has a wide Lie symmetry. In fact, using the Lie method [7–9]
we can prove that in this case Eq. (22) is invariant under the projective transformations

t′ = t/(1− pt), x′ = x/(1− pt), p ∈ <, (26a)

Ψ′
1 = Ψ1(1− pt)3/2 exp

ip|~x|2

4(1− pt)
, (26b)

the scale transformations

t′ = m2t, x′ = mx, Ψ′
1 = m−3/2 exp(iq)Ψ1, m, q ∈ <, (27)
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the translations in variable t, and rotations in the space <3.
Using the transformations (26) to the solutions (21) for d = 2, we obtain the following

soliton-like SSS

Ψ1 = a[|~x|2(1− pt)]−1/2 exp
i(4αt− p|~x|2)

4(1− pt)

[
cos h

(
2(α|~x|2)1/2

1− pt
+ c

)]−1/2

(28)

of the NSchE

iΨ1,t + ∆3Ψ1 + λ(|~x||Ψ1|)4Ψ1 = 0. (29)

Note that the solution (28) is not a solution of the form (6). Moreover, using the trans-
formations (26), (27) and the translations in variable t (for details see [3, 4]), we can
construct the following formula for obtaining new solutions of the NSchE (29)

Ψ1(t, ~x) =
1

t3/2
exp

(
i|~x|2

4t

)
V

(
−1

t
,
~x

t

)
(30)

where V (t, ~x) is an arbitrary fixed solution of this equation.
Note that the formula (30) is valid as well for any other (1+3)-dimensional nonline-

ar equation, which is invariant with respect to the transformations (26), (27) and the
translations in variable t.

4 Discussion

We have thus proved Theorems 1 and 2 that allow us to construct soliton-like SSSs of
the form (14) to the NSchE (4). This is well illustrated by the examples 1–4. In parti-
cular cases, where we have solutions to the NSchE (4) for h2 = const, exact solutions
can be found to the nonstationary NSchE (5). The well-known soliton-like solutions
of the (1+1)-dimensional Schrödinger equation with a power nonlinearity, for example,
Zakharov–Shabat‘s solution, can be easily obtained from the formula (14) by the Galilean
transformations.

It should be observed that the ansatz (13) is a particular case of one for Lie‘s solutions
(see, for example, [7–9]) and of the ansatz for non-Lie‘s solutions [9, 10]. But here we
determine first the ‘outer‘ function F = (cos h)−1/d and then obtain a system of ODEs
for the unknown functions f and g. According to the Lie method [7–9] we find first the
functions f and g, whereupon we find the unknown function F .

As concerns the direct method [10], it does not provide a clear algorithm for obtaining
the ‘outer‘ function F and it does not connect this function with the Lie solutions.

Here, for obtaining the function F , we have used the form of the Lie solutions con-
structed in [3]. Moreover, using the other Lie solutions from the papers [3], we can find
new ones to the NSchE (4). For example we can obtain periodic SSSs of the form

Ψ(|~x|2) = af(|~x|2)
[
cos(g(|~x|2))

]−1/d
, (31)

and solutions with a singularity for d > 0 of the form

Ψ(|~x|2) = af(|~x|2)
[
sinh (g(|~x|2))

]−1/d
. (32)
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For ansätze (31)–(32) we can obtain theorems that are analogous to Theorem 1, 2.
Thus, a wide class of the Lie solutions to the nonlinear Schrödiner equation enables us

to determine a structure of exact solutions to a generalization of this equation.
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