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Abstract

A problem of finding point symmetries of controlled systems is discussed, basic the-
orems and algorithms are formulated. The application to some problems of flight
dynamics is suggested.

It is well known that the concept of point symmetries of a system of ordinary differential
equations can be formulated in two ways:

1) the symmetry transfers solutions of system (1) into ones,
2) the symmetry preserves the form of system (1):

ẋi = f i(t, x), i = 1, n. (1)

In contrast to the latter, dynamic systems with control are characterized by presence
of some free functions in right-hand part of differential equations of the form (2), control
actions u:

ẋi = f i(t, x, u(·)), i = 1, n. (2)

The methodological problem in the development of group analysis of these systems is in
the necessity of ”a priori” choosing the principle of control, i.e., the form of the function u.
For example, if u = u(t), we speak about program control, at u = u(t, x) about feedback
control, at u = u(t, x, ẋ) about derivative control, etc.

Accordingly, the representations of solutions of system (2) are different. The present
research is based on the concept of feedback control. Therefore we proceed from system
(2) to the equivalent equation in first-order partial derivatives

F = X0S = St + f i(t, x, u)Sxi = 0, (3)

where X0 = ∂t + f i∂xi is a vector field associated with system (2), and solutions of (3) are
formed by the set of pairs of functions (u(t, x), S(t, x)).

We shall consider only controlled systems, when for equation (3) there exist no such
solutions S(t, x) which satisfy equation (3) for all functions u(t, x):

6 ∃ S(t, x) : X0S = 0 ∀ u(t, x). (4)

The equation (3) has special properties:
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• equation (3) is underdetermined, as it contains some dependent variables;

• control actions enter the equation functionally (algebraically);

• functions f i do not depend on S.

We shall consider symmetries of equation (3) in the class of operators of the following
form:

X = τ(t, x, u, S)∂t + ξi(t, x, u, S)∂xi + ϕ(t, x, u, S)∂u + η(t, x, u, S)∂S . (5)

The standard condition of the symmetry

X
(1)

F

∣∣∣∣∣ F = 0
= 0 (6)

gives us the system of determining equations

X0η = 0, Uη = 0, (U = ∂u), (7)

Uξi − f iUτ = 0, i = 1, n, (8)

Xf i + f iX0τ − X0ξ
i = 0. (9)

Due to the above-stated features and assumption about quite a controllability, the
analysis of system (7)–(9) can be conducted in more detail.

From conditions (4) and (7) it follows that η = η(s) and we automatically obtain the
following statement:

Proposition 1 If equation (2) admits an operator of symmetry of form (10)

X = η(t, x)∂S , (10)

system (2) is non-controllable.

The next object of our analysis is the system (8). This system is also underdetermined,
since it consists of n equations and (n + 1) unknown functions. Systems of similar forms
are not well investigated. The following approach is suggested. Due to linearity of system
(8), its general solution can be written in the form of a sum of a trivial general solution
of the uniform equation (ξ̂i(t, x) are arbitrary functions) and a partial solution of the
nonuniform equation

ξ = ξ̂i(t, x) + ξ̃i(t, x, u). (11)

The main problem is of searching for a partial solution. The following result is formulated.
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Theorem 1 In the regular case (rank‖U jfi‖ = n, j = 1, n ), a partial solution of system
(8) has the form (12)

τ = σ(n) +
n−1∑
k=0

Akσ
(k), (σ(k) = Ukσ),

ξi = f iσ(n) +
n−1∑
k=0

Bi
kσ

(k),

(12)

where σ = σ(t, x, u, S) is an arbitrary function, and for determination of coefficients
(Ai, Bi

k) it is necessary to execute the following algorithm:
1) To solve the linear system of equations (13):

WY = V, (13)

where W = ‖U jf i‖, Y = ‖Y j‖, V = ‖(−1)n+1Un+1f i‖;
2) To find Al by formula (14):

Ai =
n−1∑
k=i

(−1)k

(
k

i

)
Uk−iYk, i = 0, n − 1; (14)

3) To determine the coefficients Bi
k by recursion formulae (15), (16)

Bi
n−1 = f iAn−1 − Uf i, (15)

Bi
k = −UBi

k+1 + f i(Ak + UAk+1), k = 0, n − 2. (16)

Theorem 2 When the controlled system (2) has r control actions (u1, u2, · · · , ur) and
each one is essential, coefficients (τ, ξi) do not depend on u : τu = ξi

u = 0.

Because the functions f i do not depend on S, the following statement holds true.

Theorem 3 If X is an operator of symmetry of equation (3), then the operator X̂ =
[∂S , X] is also an operator of symmetry.

Thus, equations (7) and (8) have the constructive solution and it remains only to solve
the system (9).

If we search for operators of symmetry in more narrow classes of operators of the
following form

Y = τ(t, x)∂t + ξi(t, x)∂xi , (17)

we have the additional opportunity for decomposition of system (8), (9) on control actions.
It permits to prove the following statement.

Theorem 4 The invariance algebra admitted by the controlled system (2) in the class
of operators (17) has the finite dimension (dim Y ≤ n + 2). If system (2) admits an
(n + 2)-dimensional invariance algebra, then there exists the morfism t̂ = t̂(t) for which
the algebra Y includes an n-dimensional ideal Y1 = ξi(t̂, x)∂xi and 2-dimensional quotient
algebra Y2 = {∂t̂, t̂∂t̂ + µi(x)∂xi}.



POINT SYMMETRIES OF CONTROLLED SYSTEMS 171

This theorem generalizes the result of G.Yakovenko known previously.
Let us consider some examples.

Example 1 The invariance algebra of the system

ẋ1 = −u2, ẋ2 = u (18)

is infinite:

X = αuu∂t + (−u2αuu + 2uαu − 2α)∂x1 + (uαuu − αu)∂x2+

(−αut + u2αux1 − uαux2)∂u,
(19)

where α = α(u, x1 + u2t, x2 − ut) are arbitrary functions of the mentioned arguments.
At the same time in the class of operators (17) system (19) admits a four-dimensional
(maximal) invariance algebra of form (20):

Y1 = ∂t, Y2 = ∂x1 , Y3 = ∂x2 , Y4 = t∂t + x1∂x1 + x2∂x2 . (20)

In applied problems of flight dynamics we managed to obtain more interesting results
simultaneously as to group transformations and physical parameters (constants).

Example 2 We shall consider the longitudinal movement of aircraft, which can be de-
scribed by system (21).

ḣ = V sin θ, V̇ = 1
m

(
P − (Ac2

y + B)ρV 2

2 S − mg sin θ

)
,

L̇ = V cos θ, θ̇ = 1
mV

(
cy

ρV 2

2 S − mg cos θ

)
,

(21)

where V is the speed, h is the altitude, θ is the angle of climb, L is the distance, (P, g, S,A,
B, cy, ρ,m) are some aerodynamic coefficients.

The system (21) admits the nine-parametrical invariance algebra (22)

X1 = ∂t, X2 = ∂h, X3 = ∂L, X4 = h∂h + P∂P + ρ∂ρ,

X5 = t∂t − V ∂V − 2P∂P − 2g∂g, X6 = ρ∂ρ − S∂S ,

X7 = h∂h + L∂L + V ∂V + P∂P + 2S∂S + g∂g − 3ρ∂ρ, X8 = ∂A − c2
y∂B,

X9 = 2h∂h + 2L∂L + t∂t + V ∂V − 2cy∂cy + 2A∂A − 2B∂B.

(22)

This fact permits to transform the system (21) by means of using invariants of operators
X4–X9

t̂ = t

√
ρSg(Ac2

y + B)
2m , ĥ = h ρS

2m, L̂ = L ρS
2m,

V̂ = V

√
ρS(Ac2

y + B)
2mg , P̂ = P

mg , k = cy

Ac2
y + B

(23)

to the simpler form with two parameters only ( k is aerodynamic quality and P̂ is propulsion
efficiency)

ḣ = V sin θ, V̇ = P̂ − V 2 − sin θ,

L̇ = V cos θ, θ̇ = 1
V (kV 2 − cos θ)

(24)
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and to proceed from it to the Abel equation

dE

dθ
(kE − cos θ) = 2E(P − E − sin θ), (E = V 2). (25)

If the additional condition (P = V 2)is fulfilled, then one more operator of symmetry

X10 =
1

V sin θ
∂θ (26)

is admitted and we can construct a conservation law

V cos θ −
∫ V

0
cy(V )V 2dV = C. (27)

Thus, specific features of controlled systems make it possible (in comparison with
systems of ordinary differential equations) to calculate their symmetries and to use them
in applied problems of control. More detailed information can be found in [1]–[5].
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