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Abstract

The reduction of two nonlinear equations of the type 2u+F (u, u
1
)u0 = 0 with respect

to all rank three subalgebras of a subdirect sum of the extended Euclidean algebras
AẼ(1) and AẼ(3) is carried out. Some new invariant exact solutions of these equations
are obtained.

1 Introduction

Fushchych and Serova [1] have described equations of the type

2u+ F (u, u
1
)u0 = 0

which are invariant under subdirect sums of the extended Euclidean algebras AẼ(1) =
< P0, D1 > and AẼ(3) =< P1, P2, P3 > +⊃ (AO(3)

⊕
< D2 >). Such, in particular, are

the equations

∂2u

∂x2
0

− ∂2u

∂x2
1

− ∂2u

∂x2
2

− ∂2u

∂x2
3

+ λu
∂u

∂x0
= 0, (1.1)

∂2u

∂x2
0

− ∂2u

∂x2
1

− ∂2u

∂x2
2

− ∂2u

∂x2
3

+ λ
∂u

∂x0
exp(u) = 0, (1.2)

where λ is an arbitrary nonzero real constant. It is known [1] that the maximal invariance
algebra of equation (1.1) in Lie sense is the algebra F(1) generated the by vector fields

P0 =
∂

∂x0
, Pa =

∂

∂xa
, Jab = xa

∂

∂xb
− xb

∂

∂xa
,

D = x0
∂

∂x0
+ x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
− u

∂

∂u
,

where a, b = 1, 2, 3 . The maximal invariance algebra of equation (1.2) is the algebra F(2)

generated by the vector fields P0, Pa, Jab (a, b = 1, 2, 3) and field

D = x0
∂

∂x0
+ x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
− ∂

∂u
.
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Some exact solutions of equation (1.1) were found in [2] (for a two-dimensional case where
λ = 2) and in [1, 3] (for three- and four-dimensional cases). Some particular solutions of
equation (1.2) are obtained in [1, 3].

In present paper, complete lists of subalgebras of the algebras F(1) and F(2) with respect
to conjugation have been found and new exact solutions of the investigated equations are
constructed by solutions of ordinary differential equations obtained as a result of reduction
on rank three subalgebras (as regards the concepts and results used here, see [4, 5] as
well).

Equations (1.1) and (1.2) being invariant, the transformation (x0, x1, x2, x3, u) →
(x0,−x1, x2, x3, u) under their reducing subalgebras of algebras F(i) can be regarded with
respect to conjugation determining by group G(i) generated by inner automorphisms of
the algebra F(i) (i = 1, 2) and the discrete automorphism P0 → P0, P1 → −P1, P2 →
P2, P3 → P3, J12 → −J12, J13 → −J13, J23 → J23, D → D.

Applying a general method suggested in [6] and complemented by a number of propo-
sitions in [7], we carry out the required classification of all subalgebras of the algebra F(i).
The complete list of required subalgebras is given in Sec.2.

Let ω, ω
′
be a system of functionally independent invariants of rank three subalgebra

L of the algebra F(i). Then the ansatz

ω
′
= ϕ(ω) (1.3)

reduces equation (1.1) or (1.2) to a differential equation involving only ω, ϕ, ϕ̇, ϕ̈. Such
reduction is called symmetry reduction. It is presented in Sec.3 and 4. For each of rank
three subalgebras, we point out the corresponding ansatz (1.3) solved for u, the invariant
ω as well as the reduced equation which is obtained by means of this ansatz. In the cases
where a reduced equation can be solved we point out the corresponding invariant solutions
of equations (1.1) and (1.2).

We denote the real Lie algebra with generators X1, . . . , Xs by < X1, . . . , Xs > , se-
quence of algebras U1+⊃ K, . . . , Um+⊃ K by K : U1, . . . , Um.

2 Classification of subalgebras of the invariance algebra

We restrict ourselves to consideration of the case of subalgebras of the algebra F = F(1)

as for as classification of subalgebras of the algebra F(2) does not differ from classifica-
tion of subalgebras of the algebra F(1). Obtained subalgebras can be interpreted just as
subalgebras of the algebra F(2) if we use properly the representation of their generators.

Among subalgebras of the algebra F possessing the same invariants, there exists the
subalgebra contaning other subalgebras. We call it I-maximal. To carry out the symmetry
reduction of equations (1.1), it is sufficient to classify I-maximal subalgebras of the algebra
F up to conjugacy under G, where G = G(1).

It is known that the algebra AO(3) =< J12, J13, J23 > has with respect to inner
automorphisms only three subalgebras: 0, < J12 >,AO(3). The algebra AO(3) is a simple
algebra. Applying the Lie-Goursat classification method for subalgebras of algebraic sums
of Lie algebras [6, 7], we come to the conclusion that up to O(3)-conjugacy subalgebras of
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the algebra AO(3)
⊕
< D > are exhausted by the following subalgebras:

0, < D >,< J12 >,< J12 + αD > (α ∈ R,α > 0),

< J12, D >,AO(3), AO(3)
⊕
< D > .

(2.1)

Let K be one of the subalgebras (2.1) and K̂ be such a subalgebra of the algebra F
that its projection onto AO(3)

⊕
< D > coincides with K. If the projection of K onto

< D > is nonzero, then K annuls only a zero subspace in the space U =< P0, P1, P2, P3 >.
Since K is a completely reducible algebra of linear transformations of this space, then in
view of Theorem I.5.3 [7], the algebra K̂ is a splitting one, i.e., it is conjugated with
an algebra of the form V+⊃ K, where V ⊂ U . Let π(K) be the projection of K onto
AO(3). If π(K) =< J12 >, then in view of Theorem III.4.1 [7] the algebra K̂ contains
its projection onto < P1, P2 >, and if π(K) = AO(3), then AO(3) ⊂ K̂ and K̂ contains
its projection onto < P1, P2, P3 >.

In view of Witt’s mapping theorem [8] and the Lie-Goursat classification method,
nonzero subspaces of the space U are exhausted with respect to O(3)-conjugation by the
subspaces:

< P0 >,< αP0 + P1 >,< P0, P1 >,< αP0 + P1, P2 >

< P0, P1, P2 >,< αP0 + P1, P2, P3 >,< P0, P1, P2, P3 >,
(2.2)

where α ∈ R and α ≥ 0. Using the automorphism corresponding to the element exp (θD),
we can assume that α ∈ {0, 1}.

It is proved in the work [9] that the algebra AE(3) =< P1, P2, P3 > +⊃ AO(3) has with
respect to inner automorphisms such and only such nonzero subalgebras:

< P1 >,< P1, P2 >,< P1, P2, P3 >;

< J12 >: 0, < P3 >,< P1, P2 >,< P1, P2, P3 >;

< J12 + αP3 >: 0, < P1, P2 > (α 6= 0);

< J12, J13, J23 >: 0, < P1, P2, P3 > .

For description of subalgebras of the algebra < P0 >
⊕
AE(3), it should be used the

Lie-Goursat classification method and remarks made previosly.
According to what has been said, it is not difficult to receive that the algebra F has

with respect to G-conjugation only such I-maximal subalgebras:
A. Subalgebras having zero projections onto AO(3):

< P0 >,< αP0 + P1 >,< P0, P1 >,< βP0 + P1, P2 >,

where α ≥ 0, β > 0;

< D >: 0, < P0 >,< αP0 + P1 >,< P0, P1 >,< βP0 + P1, P2 >,

where α ≥ 0, β > 0.
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B. Subalgebras having zero projections onto < D > and nonzero projections onto
AO(3):

< J12 >: 0, < P0 >,< αP0 + P3 >,< P0, P3 >,< P1, P2 >,

< P0, P1, P2 >,< βP0 + P3, P1, P2 >, where α ≥ 0, β > 0;

< J12 + P0 >: 0, < αP0 + P3 > (α ≥ 0);

< J12 + αP0 + P3 > (α ≥ 0);

< J12, J13, J23 >: 0, < P0 >,< P1, P2, P3 >,< P0, P1, P2, P3 > .

C. Subalgebras having nonzero projections onto AO(3) and < D >:

< J12 + βD >: 0, < P0 >,< αP0 + P3 >,< P0, P3 >, where α ≥ 0, β > 0;

< J12, D >: 0, < P0 >,< αP0 + P3 >,< P0, P3 >,< P1, P2 >,

< P0, P1, P2 >,< αP0 + P3, P1, P2 >, (α ≥ 0);

AO(3)
⊕

< D >: 0, < P0 >,< P1, P2, P3 >,< P0, P1, P2, P3 > .

3 Reduction of equation (1.1) to ordinary differential
equations

If u = u(x1, x2, x3) is the solution of equation (1) or (2), then u is a solution of the Laplace
equation ∆u = 0. In this connection, let us restrict ourselves to subalgebras of the algebra
F that don’t contain P0.
3.1. < αP0 + P1, P2, P3, J23 > (α ≥ 0) : u = ϕ(ω), ω = x0 − αx1,

(1− α2)ϕ̈+ λϕϕ̇ = 0. (3.1)

If α = 1, then ϕ = C. Let α 6= 1. Equation (3.1) is equivalent to∫
dϕ

ϕ2 + C1
=

λ

2(α2 − 1)
ω + C2.

For C1 = a2 > 0 we have ϕ = a tan
{

λaω
2(α2 − 1)

+ C2

}
. The corresponding solution of

equation (1.1) has the form

u = a tan
{λa(x0 − αx1)

2(α2 − 1)
+ C2

}
.

For C1 = 0 we have ϕ = 2(1− α2)
λω + C , and therefore u = 2(1− α2)

λ(x0 − αx1) + C
. For C1 = −a2 < 0

we find that ϕ =
a

(
1 + C exp

{
λa

α2 − 1
ω

})
1− C exp

{
λa

α2 − 1
ω

} . The corresponding solution of equation (1.1)

will be written in the form

u =
a

(
1 + C exp

{
λa

α2 − 1
(x0 − αx1)

})
1− C exp

{
λa

α2 − 1
(x0 − αx1)

} .
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3.2. < αP0 + P1, P3, D > (α ≥ 0) : u = 1
x0 − αx1

ϕ(ω), ω = x2
x0 − αx1

,

((1− α2)ω2 − 1)ϕ̈+ 4(1− α2)ωϕ̇+ 2(1− α2)ϕ− λϕ2 − λωϕϕ̇ = 0. (3.2)

We integrate equation (3.2) and obtain

ω[(1− α2)ω2 − 1]ϕ̇+ [(1− α2)ω2 + 1]ϕ− λ

2
ω2ϕ2 = C1. (3.3)

For C1 = 0 equation (3.3) is the Bernoulli equation. Depending on values of α, we receive
such its solutions:

ϕ =
6ω

λω3 + C
, for α = 1;

ϕ =
8ω

λβ

{
2βω + (ω2 − β2)

[
ln
∣∣∣ω + β
ω − β

∣∣∣+ C

]} , for
1

1− α2 = β2 > 0;

ϕ =
4ω

λβ

{
−βω + (ω2 + β2)

[
arctan ωβ + C

]} , for
1

1− α2 = −β2 < 0.

Corresponding solutions of equation (1.1) are:

u =
6x2(x0 − x1)2

λx3
2 + C(x0 − x1)3

, for α = 1;

u =
8x2(x0 − αx1)

λβ

{
2βx2(x0 − αx1) + (x2

2 − β2(x0 − αx1)2)
(

ln
∣∣∣x2 + βx0 − αβx1
x2 − βx0 + αβx1

∣∣∣+ C

)} ,

for
1

1− α2 = β2 > 0,

u =
4x2(x0 − αx1)

λβ

{
−βx2(x0 − αx1) + (x2

2 + β2(x0 − αx1)2)
(

arctan x2
β(x0 − αx1)

+ C

)} ,

for
1

1− α2 = −β2 < 0.

Let C1 6= 0 in equation (3.3). If α 6= 1 and 1
1− α2 = β2, then equation (3.3) can be

written in the form

ω(ω2 − β2)ϕ̇+ (ω2 + β2)ϕ− µω2ϕ2 = C1, µ =
λ

2(1− α2)
. (3.4)

A solution of equation (3.4) is looked for in the form ϕ = C1

ωψ(ω) + β2 . The function ψ is

defined by the equation

dψ

ψ2 − β2 + µC1
=

dω

−(ω2 − β2)
. (3.5)
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Depending on values of β2 − µC1, we receive the following solutions of equation (3.5):

ψ = γ
|ω − β|

γ
β + C2|ω + β|

γ
β

|ω − β|
γ
β − C2|ω + β|

γ
β

, for β2 − µC1 = γ2 > 0;

ψ = 2β
[
ln |ω + β

ω − β
|+ C2

]−1

, for β2 − µC1 = 0;

ψ = γ tan
{
γ

2β
ln
∣∣∣∣ω + β

ω − β

∣∣∣∣+ C2

}
, for β2 − µC1 = −γ2 < 0.

Corresponding solutions of equation (3.4) have the form:

ϕ = C1

{
γω
|ω − β|

γ
β + C2|ω + β|

γ
β

|ω − β|
γ
β − C2|ω + β|

γ
β

+ β2

}−1

, for β2 − µC1 = γ2 > 0;

ϕ = C1

{
2βω

(
ln
∣∣∣∣ω + β

ω − β

∣∣∣∣+ C2

)−1

+ β2

}−1

, for β2 − µC1 = 0;

ϕ = C1

{
γω tan

{
γ

2β
ln
∣∣∣∣ω + β

ω − β

∣∣∣∣+ C2

}
+ β2

}−1

, for β2 − µC1 = −γ2 < 0.

Corresponding solutions of equation (1.1) are:

u = C1

{
γx2

(
|x2 − βx0 + αβx1|

γ
β + C2|x2 + βx0 − αβx1|

γ
β

|x2 − βx0 + αβx1|
γ
β − C2|x2 + βx0 − αβx1|

γ
β

+ β2(x0 − αx1)

)}−1

,

for β2 − µC1 = γ2 > 0;

u = C1

{
2βx2

[
ln
∣∣∣∣x2 + βx0 − αβx1

x2 − βx0 + αβx1

∣∣∣∣+ C2

]−1

+ β2(x0 − αx1)

}−1

,

for β2 − µC1 = 0;

u = C1

{
γx2 tan

{
γ

2β
ln
∣∣∣∣x2 + βx0 − αβx1

x2 − βx0 + αβx1

∣∣∣∣+ C2

}
+ β2(x0 − αx1)

}−1

,

for β2 − µC1 = −γ2 < 0.

If α 6= 0 and 1
1− α2 = −β2, then it is possible to represent equation (3.3) in the form

ω(ω2 + β2)ϕ̇+ (ω2 − β2)ϕ− µω2ϕ2 = C1, µ =
λ

2(1− α2)
. (3.6)

A solution of equation (3.6) is looked for in the form ϕ = C1

ωψ(ω)− β2 . The function ψ is

defined by the equation

dψ

ψ2 + β2 + µC1
=

dω

−(ω2 + β2)
. (3.7)
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If β2 + µC1 = γ2 > 0, then a general solution of equation (3.7) is:

ψ = γ tan
{
−γ
β

arctan
ω

β
+ C2

}
,

and the corresponding solution of equation (3.6) is

ϕ = −C1

[
γω tan

{
γ

β
arctan

ω

β
+ C2

}
+ β2

]−1

.

If β2 + µC1 = 0, then

ψ =
β

arctan ωβ + C2
and ϕ = C1

 βω

arctan ωβ + C2
− β2

−1

.

Provided β2 + µC1 = −γ2, then

ψ = γ
C2 exp

{
2γ
β arctan ωβ

}
+ 1

C2 exp
{

2γ
β arctan ωβ

}
− 1

and ϕ = C1

γω
C2 exp

{
2γ
β arctan ωβ

}
+ 1

C2 exp
{

2γ
β arctan ωβ

}
− 1

− β2


−1

.

For the obtained values ϕ we derive the following solutions of equation (1.1)

u = −C1

{
γx2 tan

{
γ

β
arctan

x2

βx0 − αβx1
+ C2

}
+ β2(x0 − αx1)

}−1

,

for β2 + µC1 = γ2 > 0;

u = C1

 βx2

arctan x2
βx0 − αβx1

+ C2
− β2(x0 − αx1)


−1

for β2 + µC1 = 0;

u = C1

γx2

C2 exp
{

2γ
β arctan x2

βx0 − αβx1

}
+ 1

C2 exp
{

2γ
β arctan x2

βx0 − αβx1

}
− 1

− β2(x0 − αx1)


−1

,

for β2 + µC1 = −γ2 > 0.

3.3. < αP0 + P3, J12, D > (α ≥ 0) : u = 1
x0 − αx3

ϕ(ω), ω = x2
1 + x2

2

(x0 − αx3)2
,

4ω[(1− α2)ω − 1]ϕ̈+ [10(1− α2)ω − 4]ϕ̇+ 2(1− α2)ϕ− λϕ2 − 2λωϕϕ̇ = 0.

The reduced equation is equivalent to one:

4ω[(1− α2)ω − 1]ϕ̇+ 2(1− α2)ωϕ− λωϕ2 = C1, (3.8)

where C1 is an arbitrary constant.
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Let C1 = 0. Equation (3.8) is transformed into a separable differential equation. In
this case we obtain that

u =
4(x0 − x3)

λ(x2
1 + x2

2) + C(x0 − x3)2
, for α = 1,

and for α 6= 1

u =
2(1− α2)

λ(x0 − αx3) + C
√

(1− α2)(x2
1 + x2

2)− (x0 − αx3)2
.

3.4. AO(3)
⊕
< D >: u = 1

x0
ϕ(ω), ω = x2

1 + x2
2 + x2

3

x2
0

,

4ω(ω − 1)ϕ̈+ (10ω − 6)ϕ̇− 2λωϕϕ̇+ 2ϕ− λϕ2 = 0.

By integrating this equation, we arrive at the Riccati equation:

4ω(ω − 1)ϕ̇+ 2(ω − 1)ϕ− λωϕ2 = C1. (3.9)

The substitution ϕ(ω) = 1
t ψ(t), t =

√
ω reduces equation (3.9) to

dψ

λ(ψ2 + λ−1C1)
=

dt

2(t2 − 1)
.

The general solution of equation (3.9) has the form

ϕ =
a√
ω

tan

{
λa

4
ln
∣∣∣C2

√
ω − 1√
ω + 1

∣∣∣} , for C1 = λa2, a > 0,

ϕ =
1√
ω

(
λ

4
ln
∣∣∣√ω + 1√
ω − 1

∣∣∣+ C2

)−1

, for C1 = 0,

ϕ =
a√
ω

√
|
√
ω + 1|λa + C2

√
|
√
ω − 1|λa√

|
√
ω + 1|λa − C2

√
|
√
ω − 1|λa

, for C1 = −λa2, a > 0.

The corresponding solution of equation (1.1) has the form

u(x) =
a√

x2
1 + x2

2 + x2
3

tan

λa4 ln
∣∣∣C2

√
x2

1 + x2
2 + x2

3 − x0√
x2

1 + x2
2 + x2

3 + x0

∣∣∣
, for C1 = λa2, a > 0;

u(x) =
1√

x2
1 + x2

2 + x2
3

λ4 ln
∣∣∣
√
x2

1 + x2
2 + x2

3 + x0√
x2

1 + x2
2 + x2

3 − x0

∣∣∣+ C2


−1

, for C1 = 0;

u(x) =
a√

x2
1 + x2

2 + x2
3

√
|
√
x2

1 + x2
2 + x2

3 + x0|λa + C2

√
|
√
x2

1 + x2
2 + x2

3 − x0|λa√
|
√
x2

1 + x2
2 + x2

3 + x0|λa − C2

√√
|x2

1 + x2
2 + x2

3 − x0|λa

for C1 = −λa2, a > 0.
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4 Reduction of equation (1.2) to ordinary differential
equations

4.1. < αP0 + P1, P3, D > (α ≥ 0) : u = ϕ(ω)− ln {x0 − αx1}, ω = x2
x0 − αx1

,

((1− α2)ω2 − 1)ϕ̈+ 2(1− α2)ωϕ̇− λω exp(ϕ)ϕ̇− λ exp(ϕ) + 1− α2 = 0. (4.1)

If we integrate equation (4.1), we obtain

((1− α2)ω2 − 1)ϕ̇− λω exp(ϕ) + (1− α2)ω = C1. (4.2)

The substitution ϕ = lnψ transforms equation (4.2) into the Bernoulli equation

((1− α2)ω2 − 1)ψ̇ − λωψ2 + ((1− α2)ω − C1)ψ = 0. (4.3)

If α = 1, C1 6= 0, the general solution of equation (4.3) has the form

ψ =
C2

1

λC1ω − λ+ C2
1C2 exp(−C1ω)

.

Then

ϕ = ln
C2

1

λC1ω − λ+ C2
1C2 exp(−C1ω)

,

and therefore

u = ln
C2

1

λC1x2 − λ(x0 − x1) + C2
1C2(x0 − x1) exp

{
− C1x2
x0 − x1

} .
For α = 1, C1 = 0, we find that ψ = 2

λω2 + C
, and therefore the corresponding solution

of equation (1.2) has the form u = ln 2(x0 − x1)
λx2

2 + C(x0 − x1)2
.

If α 6= 1 and 1
1− α2 = β2 > 0, equation (4.3) has such a solution depending on C1β:

1
ψ

=
{
λβ|ω + β|
2(C1β + 1)

+
λβ|ω − β|
2(C1β − 1)

+ C2|ω − β|
1+C1β

2 |ω + β|
1−C1β

2

}
, for C1β 6= 1;

1
ψ

=
λβ

4

{
(ω + β) + (ω − β) ln

∣∣∣∣ω + β

ω − β

∣∣∣∣+ C2(ω − β)
}
, for C1β = 1;

1
ψ

=
λβ

4

{
−(ω − β) + (ω + β) ln

∣∣∣∣ω + β

ω − β

∣∣∣∣+ C2(ω + β)
}
, for C1β = −1.

Corresponding solutions of equation (1.2) have the form

u = − ln
{λβ|x2 + βx0 − βαx1|

2(C1β + 1)
+
λβ|x2 − βx0 + βαx1|

2(C1β − 1)
+

C2|x2 − βx0 + βαx1|
1+C1β

2 |x2 + βx0 − βαx1|
1−C1β

2

}
, for C1β 6= ±1;
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u = − ln
{λβ

4
(x2 + βx0 − βαx1) +

λβ

4
(x2 − βx0 + βαx1) ln

∣∣∣∣x2 + βx0 − αβx1

x2 − βx0 + αβx1

∣∣∣∣+
C2(x2 − βx0 + αβx1)

}
, for C1β = 1;

u = − ln
{
−λβ

4
(x2 − βx0 + βαx1) +

λβ

4
(x2 + βx0 − βαx1) ln

∣∣∣∣x2 + βx0 − αβx1

x2 − βx0 + αβx1

∣∣∣∣+
C2(x2 + βx0 − αβx1)

}
, for C1β = −1.

If α 6= 1 and 1
1− α2 = −β2 < 0, equation (4.3) has the solution

1
ψ

=
λβ2(C1ω − 1)

1 + β2C2
1

+ C2

√
ω2 + β2 exp

{
−βC1 arctan

ω

β

}
.

The corresponding solution of equation (1.2) is

u = − ln
{λβ2(C1x2 − x0 + αx1)

1 + β2C2
1

+

C2

√
x2

2 + β2(x0 − αx1)2 exp
{
−βC1 arctan

x2

β(x0 − αx1)

}}
.

4.2. < αP0 + P1, P2, P3, J23 > (α ≥ 0) : u = ϕ(ω), ω = x0 − αx1,

(1− α2)ϕ̈+ λϕ̇ exp(ϕ) = 0. (4.4)

If α = 1, then ϕ = C. If α 6= 1, then the expression∫
dϕ

λ exp(ϕ) + C1
=

ω

α2 − 1
+ C2

is a general solution of equation (4.4). Hence it appears that

ϕ = ln

{
1− α2

λ(ω + C2)

}
for C1 = 0

and

ϕ = ln

 C1C2 exp
{

C1ω
α2−1

}
1− λC2 exp

{
C1ω
α2−1

}
 for C1 6= 0.

The functions

u = ln

{
1− α2

λ(x0 − αx1 + C)

}
and u = ln


C1C2 exp

{
C1

α2 − 1
(x0 − αx1)

}
1− λC2 exp

{
C1

α2 − 1
(x0 − αx1)

}


are corresponding solutions of equation (1.2).

4.3. < αP0 + P3, J12, D > (α ≥ 0) : u = ϕ(ω)− ln{x0 − αx3}, ω = x2
1 + x2

2

(x0 − αx3)2
,

4ω((1− α2)ω − 1)ϕ̈+ (6(1− α2)ω − 4)ϕ̇− λ(2ωϕ̇+ 1) exp(ϕ) + 1− α2 = 0.

4.4. AO(3)
⊕
< D >: u = ϕ(ω)− lnx0, ω = x2

1 + x2
2 + x2

3

x2
0

,

4ω(ω − 1)ϕ̈+ 6(ω − 1)ϕ̇− λ(2ωϕ̇+ 1) exp(ϕ) + 1 = 0.
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