The Symmetry Reduction of Nonlinear Equations of the Type $\square u+F(u, \underset{1}{u}) u_{0}=0$ to Ordinary Differential Equations

Leonid BARANNYK and Halyna LAHNO
Department of Mathematics, Pedagogical University, 2 Ostrogradsky Street, 314003, Poltava, Ukraïna

Abstract

The reduction of two nonlinear equations of the type $\square u+F(u, \underset{1}{u}) u_{0}=0$ with respect to all rank three subalgebras of a subdirect sum of the extended Euclidean algebras $A \tilde{E}(1)$ and $A \tilde{E}(3)$ is carried out. Some new invariant exact solutions of these equations are obtained.

1 Introduction

Fushchych and Serova [1] have described equations of the type

$$
\square u+F(u, \underset{1}{u}) u_{0}=0
$$

which are invariant under subdirect sums of the extended Euclidean algebras $A \tilde{E}(1)=$ $<P_{0}, D_{1}>$ and $A \tilde{E}(3)=<P_{1}, P_{2}, P_{3}>Ð\left(A O(3) \oplus<D_{2}>\right)$. Such, in particular, are the equations

$$
\begin{align*}
& \frac{\partial^{2} u}{\partial x_{0}^{2}}-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}-\frac{\partial^{2} u}{\partial x_{3}^{2}}+\lambda u \frac{\partial u}{\partial x_{0}}=0 \tag{1.1}\\
& \frac{\partial^{2} u}{\partial x_{0}^{2}}-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}-\frac{\partial^{2} u}{\partial x_{3}^{2}}+\lambda \frac{\partial u}{\partial x_{0}} \exp (u)=0 \tag{1.2}
\end{align*}
$$

where λ is an arbitrary nonzero real constant. It is known [1] that the maximal invariance algebra of equation (1.1) in Lie sense is the algebra $F_{(1)}$ generated the by vector fields

$$
\begin{aligned}
P_{0} & =\frac{\partial}{\partial x_{0}}, \quad P_{a}=\frac{\partial}{\partial x_{a}}, \quad J_{a b}=x_{a} \frac{\partial}{\partial x_{b}}-x_{b} \frac{\partial}{\partial x_{a}} \\
D & =x_{0} \frac{\partial}{\partial x_{0}}+x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}-u \frac{\partial}{\partial u}
\end{aligned}
$$

where $a, b=1,2,3$. The maximal invariance algebra of equation (1.2) is the algebra $F_{(2)}$ generated by the vector fields $P_{0}, P_{a}, J_{a b} \quad(a, b=1,2,3)$ and field

$$
D=x_{0} \frac{\partial}{\partial x_{0}}+x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial u}
$$

Copyright © 1997 by Mathematical Ukraina Publisher. All rights of reproduction in any form reserved.

Some exact solutions of equation (1.1) were found in [2] (for a two-dimensional case where $\lambda=2$) and in $[1,3]$ (for three- and four-dimensional cases). Some particular solutions of equation (1.2) are obtained in [1,3].

In present paper, complete lists of subalgebras of the algebras $F_{(1)}$ and $F_{(2)}$ with respect to conjugation have been found and new exact solutions of the investigated equations are constructed by solutions of ordinary differential equations obtained as a result of reduction on rank three subalgebras (as regards the concepts and results used here, see [4,5] as well).

Equations (1.1) and (1.2) being invariant, the transformation $\left(x_{0}, x_{1}, x_{2}, x_{3}, u\right) \rightarrow$ ($x_{0},-x_{1}, x_{2}, x_{3}, u$) under their reducing subalgebras of algebras $F_{(i)}$ can be regarded with respect to conjugation determining by group $G_{(i)}$ generated by inner automorphisms of the algebra $F_{(i)}(i=1,2)$ and the discrete automorphism $P_{0} \rightarrow P_{0}, P_{1} \rightarrow-P_{1}, \quad P_{2} \rightarrow$ $P_{2}, \quad P_{3} \rightarrow P_{3}, J_{12} \rightarrow-J_{12}, \quad J_{13} \rightarrow-J_{13}, \quad J_{23} \rightarrow J_{23}, \quad D \rightarrow D$.

Applying a general method suggested in [6] and complemented by a number of propositions in [7], we carry out the required classification of all subalgebras of the algebra $F_{(i)}$. The complete list of required subalgebras is given in Sec.2.

Let ω, ω^{\prime} be a system of functionally independent invariants of rank three subalgebra L of the algebra $F_{(i)}$. Then the ansatz

$$
\begin{equation*}
\omega^{\prime}=\varphi(\omega) \tag{1.3}
\end{equation*}
$$

reduces equation (1.1) or (1.2) to a differential equation involving only $\omega, \varphi, \dot{\varphi}, \ddot{\varphi}$. Such reduction is called symmetry reduction. It is presented in Sec. 3 and 4. For each of rank three subalgebras, we point out the corresponding ansatz (1.3) solved for u, the invariant ω as well as the reduced equation which is obtained by means of this ansatz. In the cases where a reduced equation can be solved we point out the corresponding invariant solutions of equations (1.1) and (1.2).

We denote the real Lie algebra with generators X_{1}, \ldots, X_{s} by $\left\langle X_{1}, \ldots, X_{s}\right\rangle$, sequence of algebras $U_{1} \oplus K, \ldots, U_{m} \oplus K$ by $K: U_{1}, \ldots, U_{m}$.

2 Classification of subalgebras of the invariance algebra

We restrict ourselves to consideration of the case of subalgebras of the algebra $F=F_{(1)}$ as for as classification of subalgebras of the algebra $F_{(2)}$ does not differ from classification of subalgebras of the algebra $F_{(1)}$. Obtained subalgebras can be interpreted just as subalgebras of the algebra $F_{(2)}$ if we use properly the representation of their generators.

Among subalgebras of the algebra F possessing the same invariants, there exists the subalgebra contaning other subalgebras. We call it I-maximal. To carry out the symmetry reduction of equations (1.1), it is sufficient to classify I-maximal subalgebras of the algebra F up to conjugacy under G, where $G=G_{(1)}$.

It is known that the algebra $A O(3)=<J_{12}, J_{13}, J_{23}>$ has with respect to inner automorphisms only three subalgebras: $0,\left\langle J_{12}\right\rangle, A O(3)$. The algebra $A O(3)$ is a simple algebra. Applying the Lie-Goursat classification method for subalgebras of algebraic sums of Lie algebras $[6,7]$, we come to the conclusion that up to $O(3)$-conjugacy subalgebras of
the algebra $A O(3) \oplus<D>$ are exhausted by the following subalgebras:

$$
\begin{align*}
& 0,<D>,<J_{12}>,<J_{12}+\alpha D>(\alpha \in R, \alpha>0) \\
& <J_{12}, D>, A O(3), A O(3) \oplus<D> \tag{2.1}
\end{align*}
$$

Let K be one of the subalgebras (2.1) and \hat{K} be such a subalgebra of the algebra F that its projection onto $A O(3) \oplus<D>$ coincides with K. If the projection of K onto $<D>$ is nonzero, then K annuls only a zero subspace in the space $\left.U=<P_{0}, P_{1}, P_{2}, P_{3}\right\rangle$. Since K is a completely reducible algebra of linear transformations of this space, then in view of Theorem I.5.3 [7], the algebra \hat{K} is a splitting one, i.e., it is conjugated with an algebra of the form $V \oplus K$, where $V \subset U$. Let $\pi(K)$ be the projection of K onto $A O(3)$. If $\left.\pi(K)=<J_{12}\right\rangle$, then in view of Theorem III.4.1 [7] the algebra \hat{K} contains its projection onto $<P_{1}, P_{2}>$, and if $\pi(K)=A O(3)$, then $A O(3) \subset \hat{K}$ and \hat{K} contains its projection onto $<P_{1}, P_{2}, P_{3}>$.

In view of Witt's mapping theorem [8] and the Lie-Goursat classification method, nonzero subspaces of the space U are exhausted with respect to $O(3)$-conjugation by the subspaces:

$$
\begin{align*}
& <P_{0}>,<\alpha P_{0}+P_{1}>,<P_{0}, P_{1}>,<\alpha P_{0}+P_{1}, P_{2}> \\
& <P_{0}, P_{1}, P_{2}>,<\alpha P_{0}+P_{1}, P_{2}, P_{3}>,<P_{0}, P_{1}, P_{2}, P_{3}>, \tag{2.2}
\end{align*}
$$

where $\alpha \in R$ and $\alpha \geq 0$. Using the automorphism corresponding to the element $\exp (\theta D)$, we can assume that $\alpha \in\{0,1\}$.

It is proved in the work [9] that the algebra $A E(3)=<P_{1}, P_{2}, P_{3}>Ð A O(3)$ has with respect to inner automorphisms such and only such nonzero subalgebras:

$$
\begin{aligned}
& <P_{1}>,<P_{1}, P_{2}>,<P_{1}, P_{2}, P_{3}>; \\
& <J_{12}>: 0,<P_{3}>,<P_{1}, P_{2}>,<P_{1}, P_{2}, P_{3}>; \\
& <J_{12}+\alpha P_{3}>: 0,<P_{1}, P_{2}>(\alpha \neq 0) ; \\
& <J_{12}, J_{13}, J_{23}>: 0,<P_{1}, P_{2}, P_{3}>.
\end{aligned}
$$

For description of subalgebras of the algebra $<P_{0}>\oplus A E(3)$, it should be used the Lie-Goursat classification method and remarks made previosly.

According to what has been said, it is not difficult to receive that the algebra F has with respect to G-conjugation only such I-maximal subalgebras:
A. Subalgebras having zero projections onto $A O(3)$:

$$
\left.\left.\left.\left\langle P_{0}\right\rangle,<\alpha P_{0}+P_{1}\right\rangle,<P_{0}, P_{1}\right\rangle,<\beta P_{0}+P_{1}, P_{2}\right\rangle
$$

where $\alpha \geq 0, \beta>0$;

$$
\left.\left.\left.<D>: 0,<P_{0}>,<\alpha P_{0}+P_{1}\right\rangle,<P_{0}, P_{1}\right\rangle,<\beta P_{0}+P_{1}, P_{2}\right\rangle
$$

where $\alpha \geq 0, \beta>0$.
B. Subalgebras having zero projections onto $\langle D>$ and nonzero projections onto $A O(3)$:

$$
\begin{aligned}
& <J_{12}>: 0,<P_{0}>,<\alpha P_{0}+P_{3}>,<P_{0}, P_{3}>,<P_{1}, P_{2}>, \\
& <P_{0}, P_{1}, P_{2}>,<\beta P_{0}+P_{3}, P_{1}, P_{2}>, \text { where } \alpha \geq 0, \beta>0 ; \\
& <J_{12}+P_{0}>: 0,<\alpha P_{0}+P_{3}>(\alpha \geq 0) ; \\
& <J_{12}+\alpha P_{0}+P_{3}>(\alpha \geq 0) ; \\
& <J_{12}, J_{13}, J_{23}>: 0,<P_{0}>,<P_{1}, P_{2}, P_{3}>,<P_{0}, P_{1}, P_{2}, P_{3}>.
\end{aligned}
$$

C. Subalgebras having nonzero projections onto $A O(3)$ and $\langle D\rangle$:

$$
\begin{aligned}
& <J_{12}+\beta D>: 0,<P_{0}>,<\alpha P_{0}+P_{3}>,<P_{0}, P_{3}>, \text { where } \alpha \geq 0, \beta>0 \\
& <J_{12}, D>: 0,<P_{0}>,<\alpha P_{0}+P_{3}>,<P_{0}, P_{3}>,<P_{1}, P_{2}> \\
& <P_{0}, P_{1}, P_{2}>,<\alpha P_{0}+P_{3}, P_{1}, P_{2}>,(\alpha \geq 0) ; \\
& A O(3) \bigoplus<D>: 0,<P_{0}>,<P_{1}, P_{2}, P_{3}>,<P_{0}, P_{1}, P_{2}, P_{3}>.
\end{aligned}
$$

3 Reduction of equation (1.1) to ordinary differential equations

If $u=u\left(x_{1}, x_{2}, x_{3}\right)$ is the solution of equation (1) or (2), then u is a solution of the Laplace equation $\Delta u=0$. In this connection, let us restrict ourselves to subalgebras of the algebra F that don't contain P_{0}.
3.1. $<\alpha P_{0}+P_{1}, P_{2}, P_{3}, J_{23}>(\alpha \geq 0): u=\varphi(\omega), \omega=x_{0}-\alpha x_{1}$,

$$
\begin{equation*}
\left(1-\alpha^{2}\right) \ddot{\varphi}+\lambda \varphi \dot{\varphi}=0 . \tag{3.1}
\end{equation*}
$$

If $\alpha=1$, then $\varphi=C$. Let $\alpha \neq 1$. Equation (3.1) is equivalent to

$$
\int \frac{d \varphi}{\varphi^{2}+C_{1}}=\frac{\lambda}{2\left(\alpha^{2}-1\right)} \omega+C_{2} .
$$

For $C_{1}=a^{2}>0$ we have $\varphi=a \tan \left\{\frac{\lambda a \omega}{2\left(\alpha^{2}-1\right)}+C_{2}\right\}$. The corresponding solution of equation (1.1) has the form

$$
u=a \tan \left\{\frac{\lambda a\left(x_{0}-\alpha x_{1}\right)}{2\left(\alpha^{2}-1\right)}+C_{2}\right\} .
$$

For $C_{1}=0$ we have $\varphi=\frac{2\left(1-\alpha^{2}\right)}{\lambda \omega+C}$, and therefore $u=\frac{2\left(1-\alpha^{2}\right)}{\lambda\left(x_{0}-\alpha x_{1}\right)+C}$. For $C_{1}=-a^{2}<0$ we find that $\varphi=\frac{a\left(1+C \exp \left\{\frac{\lambda a}{\alpha^{2}-1} \omega\right\}\right)}{1-C \exp \left\{\frac{\lambda a}{\alpha^{2}-1} \omega\right\}}$. The corresponding solution of equation (1.1) will be written in the form

$$
u=\frac{a\left(1+C \exp \left\{\frac{\lambda a}{\alpha^{2}-1}\left(x_{0}-\alpha x_{1}\right)\right\}\right)}{1-C \exp \left\{\frac{\lambda a}{\alpha^{2}-1}\left(x_{0}-\alpha x_{1}\right)\right\}} .
$$

3.2. $<\alpha P_{0}+P_{1}, P_{3}, D>(\alpha \geq 0): u=\frac{1}{x_{0}-\alpha x_{1}} \varphi(\omega), \omega=\frac{x_{2}}{x_{0}-\alpha x_{1}}$,

$$
\begin{equation*}
\left(\left(1-\alpha^{2}\right) \omega^{2}-1\right) \ddot{\varphi}+4\left(1-\alpha^{2}\right) \omega \dot{\varphi}+2\left(1-\alpha^{2}\right) \varphi-\lambda \varphi^{2}-\lambda \omega \varphi \dot{\varphi}=0 \tag{3.2}
\end{equation*}
$$

We integrate equation (3.2) and obtain

$$
\begin{equation*}
\omega\left[\left(1-\alpha^{2}\right) \omega^{2}-1\right] \dot{\varphi}+\left[\left(1-\alpha^{2}\right) \omega^{2}+1\right] \varphi-\frac{\lambda}{2} \omega^{2} \varphi^{2}=C_{1} \tag{3.3}
\end{equation*}
$$

For $C_{1}=0$ equation (3.3) is the Bernoulli equation. Depending on values of α, we receive such its solutions:

$$
\begin{aligned}
& \varphi=\frac{6 \omega}{\lambda \omega^{3}+C}, \text { for } \alpha=1 \\
& \varphi=\frac{8 \omega}{\lambda \beta\left\{2 \beta \omega+\left(\omega^{2}-\beta^{2}\right)\left[\ln \left|\frac{\omega+\beta}{\omega-\beta}\right|+C\right]\right\}}, \text { for } \frac{1}{1-\alpha^{2}}=\beta^{2}>0 \\
& \varphi=\frac{4 \omega}{\lambda \beta\left\{-\beta \omega+\left(\omega^{2}+\beta^{2}\right)\left[\arctan \frac{\omega}{\beta}+C\right]\right\}}, \text { for } \frac{1}{1-\alpha^{2}}=-\beta^{2}<0
\end{aligned}
$$

Corresponding solutions of equation (1.1) are:

$$
\begin{aligned}
& u=\frac{6 x_{2}\left(x_{0}-x_{1}\right)^{2}}{\lambda x_{2}^{3}+C\left(x_{0}-x_{1}\right)^{3}}, \text { for } \alpha=1 \\
& u=\frac{8 x_{2}\left(x_{0}-\alpha x_{1}\right)}{\lambda \beta\left\{2 \beta x_{2}\left(x_{0}-\alpha x_{1}\right)+\left(x_{2}^{2}-\beta^{2}\left(x_{0}-\alpha x_{1}\right)^{2}\right)\left(\ln \left|\frac{x_{2}+\beta x_{0}-\alpha \beta x_{1}}{x_{2}-\beta x_{0}+\alpha \beta x_{1}}\right|+C\right)\right\}} \\
& \text { for } \frac{1}{1-\alpha^{2}}=\beta^{2}>0 \\
& u=\frac{4 x_{2}\left(x_{0}-\alpha x_{1}\right)}{\lambda \beta\left\{-\beta x_{2}\left(x_{0}-\alpha x_{1}\right)+\left(x_{2}^{2}+\beta^{2}\left(x_{0}-\alpha x_{1}\right)^{2}\right)\left(\arctan \frac{x_{2}}{\beta\left(x_{0}-\alpha x_{1}\right)}+C\right)\right\}} \\
& \text { for } \frac{1}{1-\alpha^{2}}=-\beta^{2}<0 .
\end{aligned}
$$

Let $C_{1} \neq 0$ in equation (3.3). If $\alpha \neq 1$ and $\frac{1}{1-\alpha^{2}}=\beta^{2}$, then equation (3.3) can be written in the form

$$
\begin{equation*}
\omega\left(\omega^{2}-\beta^{2}\right) \dot{\varphi}+\left(\omega^{2}+\beta^{2}\right) \varphi-\mu \omega^{2} \varphi^{2}=C_{1}, \mu=\frac{\lambda}{2\left(1-\alpha^{2}\right)} \tag{3.4}
\end{equation*}
$$

A solution of equation (3.4) is looked for in the form $\varphi=\frac{C_{1}}{\omega \psi(\omega)+\beta^{2}}$. The function ψ is defined by the equation

$$
\begin{equation*}
\frac{d \psi}{\psi^{2}-\beta^{2}+\mu C_{1}}=\frac{d \omega}{-\left(\omega^{2}-\beta^{2}\right)} \tag{3.5}
\end{equation*}
$$

Depending on values of $\beta^{2}-\mu C_{1}$, we receive the following solutions of equation (3.5):

$$
\begin{aligned}
& \psi=\gamma \frac{|\omega-\beta|^{\frac{\gamma}{\beta}}+C_{2}|\omega+\beta|^{\frac{\gamma}{\beta}}}{|\omega-\beta|^{\frac{\gamma}{\beta}}-C_{2}|\omega+\beta|^{\frac{\gamma}{\beta}}}, \text { for } \beta^{2}-\mu C_{1}=\gamma^{2}>0 \\
& \psi=2 \beta\left[\ln \left|\frac{\omega+\beta}{\omega-\beta}\right|+C_{2}\right]^{-1}, \text { for } \beta^{2}-\mu C_{1}=0 \\
& \psi=\gamma \tan \left\{\frac{\gamma}{2 \beta} \ln \left|\frac{\omega+\beta}{\omega-\beta}\right|+C_{2}\right\}, \text { for } \beta^{2}-\mu C_{1}=-\gamma^{2}<0 .
\end{aligned}
$$

Corresponding solutions of equation (3.4) have the form:

$$
\begin{aligned}
& \varphi=C_{1}\left\{\gamma \omega \frac{|\omega-\beta|^{\frac{\gamma}{\beta}}+C_{2}|\omega+\beta|^{\frac{\gamma}{\beta}}}{|\omega-\beta|^{\frac{\gamma}{\beta}}-C_{2}|\omega+\beta|^{\frac{\gamma}{\beta}}}+\beta^{2}\right\}^{-1}, \text { for } \beta^{2}-\mu C_{1}=\gamma^{2}>0 \\
& \varphi=C_{1}\left\{2 \beta \omega\left(\ln \left|\frac{\omega+\beta}{\omega-\beta}\right|+C_{2}\right)^{-1}+\beta^{2}\right\}^{-1}, \text { for } \beta^{2}-\mu C_{1}=0 \\
& \varphi=C_{1}\left\{\gamma \omega \tan \left\{\frac{\gamma}{2 \beta} \ln \left|\frac{\omega+\beta}{\omega-\beta}\right|+C_{2}\right\}+\beta^{2}\right\}^{-1}, \text { for } \beta^{2}-\mu C_{1}=-\gamma^{2}<0
\end{aligned}
$$

Corresponding solutions of equation (1.1) are:

$$
u=C_{1}\left\{\gamma x_{2}\left(\frac{\left|x_{2}-\beta x_{0}+\alpha \beta x_{1}\right|^{\frac{\gamma}{\beta}}+C_{2}\left|x_{2}+\beta x_{0}-\alpha \beta x_{1}\right|^{\frac{\gamma}{\beta}}}{\left|x_{2}-\beta x_{0}+\alpha \beta x_{1}\right|^{\frac{\gamma}{\beta}}-C_{2}\left|x_{2}+\beta x_{0}-\alpha \beta x_{1}\right|^{\frac{\gamma}{\beta}}}+\beta^{2}\left(x_{0}-\alpha x_{1}\right)\right)\right\}^{-1}
$$

for $\beta^{2}-\mu C_{1}=\gamma^{2}>0$;

$$
u=C_{1}\left\{2 \beta x_{2}\left[\ln \left|\frac{x_{2}+\beta x_{0}-\alpha \beta x_{1}}{x_{2}-\beta x_{0}+\alpha \beta x_{1}}\right|+C_{2}\right]^{-1}+\beta^{2}\left(x_{0}-\alpha x_{1}\right)\right\}^{-1}
$$

for $\beta^{2}-\mu C_{1}=0$;

$$
u=C_{1}\left\{\gamma x_{2} \tan \left\{\frac{\gamma}{2 \beta} \ln \left|\frac{x_{2}+\beta x_{0}-\alpha \beta x_{1}}{x_{2}-\beta x_{0}+\alpha \beta x_{1}}\right|+C_{2}\right\}+\beta^{2}\left(x_{0}-\alpha x_{1}\right)\right\}^{-1}
$$

$$
\text { for } \beta^{2}-\mu C_{1}=-\gamma^{2}<0 \text {. }
$$

If $\alpha \neq 0$ and $\frac{1}{1-\alpha^{2}}=-\beta^{2}$, then it is possible to represent equation (3.3) in the form

$$
\begin{equation*}
\omega\left(\omega^{2}+\beta^{2}\right) \dot{\varphi}+\left(\omega^{2}-\beta^{2}\right) \varphi-\mu \omega^{2} \varphi^{2}=C_{1}, \mu=\frac{\lambda}{2\left(1-\alpha^{2}\right)} \tag{3.6}
\end{equation*}
$$

A solution of equation (3.6) is looked for in the form $\varphi=\frac{C_{1}}{\omega \psi(\omega)-\beta^{2}}$. The function ψ is defined by the equation

$$
\begin{equation*}
\frac{d \psi}{\psi^{2}+\beta^{2}+\mu C_{1}}=\frac{d \omega}{-\left(\omega^{2}+\beta^{2}\right)} . \tag{3.7}
\end{equation*}
$$

If $\beta^{2}+\mu C_{1}=\gamma^{2}>0$, then a general solution of equation (3.7) is:

$$
\psi=\gamma \tan \left\{-\frac{\gamma}{\beta} \arctan \frac{\omega}{\beta}+C_{2}\right\}
$$

and the corresponding solution of equation (3.6) is

$$
\varphi=-C_{1}\left[\gamma \omega \tan \left\{\frac{\gamma}{\beta} \arctan \frac{\omega}{\beta}+C_{2}\right\}+\beta^{2}\right]^{-1} .
$$

If $\beta^{2}+\mu C_{1}=0$, then

$$
\psi=\frac{\beta}{\arctan \frac{\omega}{\beta}+C_{2}} \quad \text { and } \quad \varphi=C_{1}\left[\frac{\beta \omega}{\arctan \frac{\omega}{\beta}+C_{2}}-\beta^{2}\right]^{-1}
$$

Provided $\beta^{2}+\mu C_{1}=-\gamma^{2}$, then

$$
\psi=\gamma \frac{C_{2} \exp \left\{\frac{2 \gamma}{\beta} \arctan \frac{\omega}{\beta}\right\}+1}{C_{2} \exp \left\{\frac{2 \gamma}{\beta} \arctan \frac{\omega}{\beta}\right\}-1} \text { and } \varphi=C_{1}\left\{\gamma \omega \frac{C_{2} \exp \left\{\frac{2 \gamma}{\beta} \arctan \frac{\omega}{\beta}\right\}+1}{C_{2} \exp \left\{\frac{2 \gamma}{\beta} \arctan \frac{\omega}{\beta}\right\}-1}-\beta^{2}\right\}^{-1} .
$$

For the obtained values φ we derive the following solutions of equation (1.1)

$$
\begin{aligned}
& u=-C_{1}\left\{\gamma x_{2} \tan \left\{\frac{\gamma}{\beta} \arctan \frac{x_{2}}{\beta x_{0}-\alpha \beta x_{1}}+C_{2}\right\}+\beta^{2}\left(x_{0}-\alpha x_{1}\right)\right\}^{-1}, \\
& \text { for } \beta^{2}+\mu C_{1}=\gamma^{2}>0 ; \\
& u=C_{1}\left\{\frac{\beta x_{2}}{\arctan \frac{x_{2}}{\beta x_{0}-\alpha \beta x_{1}}+C_{2}}-\beta^{2}\left(x_{0}-\alpha x_{1}\right)\right\}^{-1} \text { for } \beta^{2}+\mu C_{1}=0 ; \\
& u=C_{1}\left\{\gamma x_{2} \frac{C_{2} \exp \left\{\frac{2 \gamma}{\beta} \arctan \frac{x_{2}}{C_{2} \exp \left\{\frac{2 \gamma}{\beta} \arctan \frac{x_{2}}{\beta x_{0}-\alpha \beta x_{1}}\right\}-1}-\beta^{2}\left(x_{0}-\alpha x_{1}\right)\right\}^{-1},}{}\right.
\end{aligned}
$$

for $\beta^{2}+\mu C_{1}=-\gamma^{2}>0$.
3.3. $<\alpha P_{0}+P_{3}, J_{12}, D>(\alpha \geq 0): u=\frac{1}{x_{0}-\alpha x_{3}} \varphi(\omega), \omega=\frac{x_{1}^{2}+x_{2}^{2}}{\left(x_{0}-\alpha x_{3}\right)^{2}}$,

$$
4 \omega\left[\left(1-\alpha^{2}\right) \omega-1\right] \ddot{\varphi}+\left[10\left(1-\alpha^{2}\right) \omega-4\right] \dot{\varphi}+2\left(1-\alpha^{2}\right) \varphi-\lambda \varphi^{2}-2 \lambda \omega \varphi \dot{\varphi}=0 .
$$

The reduced equation is equivalent to one:

$$
\begin{equation*}
4 \omega\left[\left(1-\alpha^{2}\right) \omega-1\right] \dot{\varphi}+2\left(1-\alpha^{2}\right) \omega \varphi-\lambda \omega \varphi^{2}=C_{1}, \tag{3.8}
\end{equation*}
$$

where C_{1} is an arbitrary constant.

Let $C_{1}=0$. Equation (3.8) is transformed into a separable differential equation. In this case we obtain that

$$
u=\frac{4\left(x_{0}-x_{3}\right)}{\lambda\left(x_{1}^{2}+x_{2}^{2}\right)+C\left(x_{0}-x_{3}\right)^{2}}, \text { for } \alpha=1,
$$

and for $\alpha \neq 1$

$$
u=\frac{2\left(1-\alpha^{2}\right)}{\lambda\left(x_{0}-\alpha x_{3}\right)+C \sqrt{\left(1-\alpha^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)-\left(x_{0}-\alpha x_{3}\right)^{2}}} .
$$

3.4. $A O(3) \oplus<D>: u=\frac{1}{x_{0}} \varphi(\omega), \omega=\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{x_{0}^{2}}$,

$$
4 \omega(\omega-1) \ddot{\varphi}+(10 \omega-6) \dot{\varphi}-2 \lambda \omega \varphi \dot{\varphi}+2 \varphi-\lambda \varphi^{2}=0 .
$$

By integrating this equation, we arrive at the Riccati equation:

$$
\begin{equation*}
4 \omega(\omega-1) \dot{\varphi}+2(\omega-1) \varphi-\lambda \omega \varphi^{2}=C_{1} . \tag{3.9}
\end{equation*}
$$

The substitution $\varphi(\omega)=\frac{1}{t} \psi(t), t=\sqrt{\omega}$ reduces equation (3.9) to

$$
\frac{d \psi}{\lambda\left(\psi^{2}+\lambda^{-1} C_{1}\right)}=\frac{d t}{2\left(t^{2}-1\right)} .
$$

The general solution of equation (3.9) has the form

$$
\begin{aligned}
& \varphi=\frac{a}{\sqrt{\omega}} \tan \left\{\frac{\lambda a}{4} \ln \left|C_{2} \frac{\sqrt{\omega}-1}{\sqrt{\omega}+1}\right|\right\}, \text { for } C_{1}=\lambda a^{2}, a>0, \\
& \varphi=\frac{1}{\sqrt{\omega}}\left(\frac{\lambda}{4} \ln \left|\frac{\sqrt{\omega}+1}{\sqrt{\omega}-1}\right|+C_{2}\right)^{-1}, \text { for } C_{1}=0, \\
& \varphi=\frac{a}{\sqrt{\omega}} \frac{\sqrt{|\sqrt{\omega}+1|^{\lambda a}}+C_{2} \sqrt{|\sqrt{\omega}-1|^{\lambda a}}}{\sqrt{|\sqrt{\omega}+1|^{\lambda a}}-C_{2} \sqrt{|\sqrt{\omega}-1|^{\lambda a}}}, \text { for } C_{1}=-\lambda a^{2}, a>0 .
\end{aligned}
$$

The corresponding solution of equation (1.1) has the form

$$
\begin{aligned}
& u(x)=\frac{a}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} \tan \left\{\frac{\lambda a}{4} \ln \left|C_{2} \frac{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}-x_{0}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}+x_{0}}\right|\right\}, \text { for } C_{1}=\lambda a^{2}, a>0 ; \\
& u(x)=\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}\left\{\frac{\lambda}{4} \ln \left|\frac{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}+x_{0}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}-x_{0}}\right|+C_{2}\right\}^{-1}, \text { for } C_{1}=0 ; \\
& u(x)=\frac{a}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} \frac{\sqrt{\left|\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}+x_{0}\right|^{\lambda a}}+C_{2} \sqrt{\left|\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}-x_{0}\right|^{\lambda a}}}{\sqrt{\left|\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}+x_{0}\right|^{\lambda a}}-C_{2} \sqrt{\sqrt{\mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}-\left.x_{0}\right|^{a}}} \\
& \text { for } C_{1}=-\lambda a^{2}, \quad a>0 .
\end{aligned}
$$

4 Reduction of equation (1.2) to ordinary differential equations

4.1. $<\alpha P_{0}+P_{1}, P_{3}, D>(\alpha \geq 0): u=\varphi(\omega)-\ln \left\{x_{0}-\alpha x_{1}\right\}, \omega=\frac{x_{2}}{x_{0}-\alpha x_{1}}$,

$$
\begin{equation*}
\left(\left(1-\alpha^{2}\right) \omega^{2}-1\right) \ddot{\varphi}+2\left(1-\alpha^{2}\right) \omega \dot{\varphi}-\lambda \omega \exp (\varphi) \dot{\varphi}-\lambda \exp (\varphi)+1-\alpha^{2}=0 . \tag{4.1}
\end{equation*}
$$

If we integrate equation (4.1), we obtain

$$
\begin{equation*}
\left(\left(1-\alpha^{2}\right) \omega^{2}-1\right) \dot{\varphi}-\lambda \omega \exp (\varphi)+\left(1-\alpha^{2}\right) \omega=C_{1} \tag{4.2}
\end{equation*}
$$

The substitution $\varphi=\ln \psi$ transforms equation (4.2) into the Bernoulli equation

$$
\begin{equation*}
\left(\left(1-\alpha^{2}\right) \omega^{2}-1\right) \dot{\psi}-\lambda \omega \psi^{2}+\left(\left(1-\alpha^{2}\right) \omega-C_{1}\right) \psi=0 \tag{4.3}
\end{equation*}
$$

If $\alpha=1, C_{1} \neq 0$, the general solution of equation (4.3) has the form

$$
\psi=\frac{C_{1}^{2}}{\lambda C_{1} \omega-\lambda+C_{1}^{2} C_{2} \exp \left(-C_{1} \omega\right)}
$$

Then

$$
\varphi=\ln \frac{C_{1}^{2}}{\lambda C_{1} \omega-\lambda+C_{1}^{2} C_{2} \exp \left(-C_{1} \omega\right)}
$$

and therefore

$$
u=\ln \frac{C_{1}^{2}}{\lambda C_{1} x_{2}-\lambda\left(x_{0}-x_{1}\right)+C_{1}^{2} C_{2}\left(x_{0}-x_{1}\right) \exp \left\{-\frac{C_{1} x_{2}}{x_{0}-x_{1}}\right\}}
$$

For $\alpha=1, C_{1}=0$, we find that $\psi=\frac{2}{\lambda \omega^{2}+C}$, and therefore the corresponding solution of equation (1.2) has the form $u=\ln \frac{2\left(x_{0}-x_{1}\right)}{\lambda x_{2}^{2}+C\left(x_{0}-x_{1}\right)^{2}}$.

If $\alpha \neq 1$ and $\frac{1}{1-\alpha^{2}}=\beta^{2}>0$, equation (4.3) has such a solution depending on $C_{1} \beta$:

$$
\begin{aligned}
& \frac{1}{\psi}=\left\{\frac{\lambda \beta|\omega+\beta|}{2\left(C_{1} \beta+1\right)}+\frac{\lambda \beta|\omega-\beta|}{2\left(C_{1} \beta-1\right)}+C_{2}|\omega-\beta|^{\frac{1+C_{1} \beta}{2}}|\omega+\beta|^{\frac{1-C_{1} \beta}{2}}\right\}, \text { for } C_{1} \beta \neq 1 \\
& \frac{1}{\psi}=\frac{\lambda \beta}{4}\left\{(\omega+\beta)+(\omega-\beta) \ln \left|\frac{\omega+\beta}{\omega-\beta}\right|+C_{2}(\omega-\beta)\right\}, \text { for } C_{1} \beta=1 \\
& \frac{1}{\psi}=\frac{\lambda \beta}{4}\left\{-(\omega-\beta)+(\omega+\beta) \ln \left|\frac{\omega+\beta}{\omega-\beta}\right|+C_{2}(\omega+\beta)\right\}, \text { for } C_{1} \beta=-1
\end{aligned}
$$

Corresponding solutions of equation (1.2) have the form

$$
\begin{aligned}
u= & -\ln \left\{\frac{\lambda \beta\left|x_{2}+\beta x_{0}-\beta \alpha x_{1}\right|}{2\left(C_{1} \beta+1\right)}+\frac{\lambda \beta\left|x_{2}-\beta x_{0}+\beta \alpha x_{1}\right|}{2\left(C_{1} \beta-1\right)}+\right. \\
& \left.C_{2}\left|x_{2}-\beta x_{0}+\beta \alpha x_{1}\right|^{\frac{1+C_{1} \beta}{2}}\left|x_{2}+\beta x_{0}-\beta \alpha x_{1}\right|^{\frac{1-C_{1} \beta}{2}}\right\}, \text { for } C_{1} \beta \neq \pm 1
\end{aligned}
$$

$$
\begin{aligned}
u= & -\ln \left\{\frac{\lambda \beta}{4}\left(x_{2}+\beta x_{0}-\beta \alpha x_{1}\right)+\frac{\lambda \beta}{4}\left(x_{2}-\beta x_{0}+\beta \alpha x_{1}\right) \ln \left|\frac{x_{2}+\beta x_{0}-\alpha \beta x_{1}}{x_{2}-\beta x_{0}+\alpha \beta x_{1}}\right|+\right. \\
& \left.C_{2}\left(x_{2}-\beta x_{0}+\alpha \beta x_{1}\right)\right\}, \text { for } C_{1} \beta=1 ; \\
u= & -\ln \left\{-\frac{\lambda \beta}{4}\left(x_{2}-\beta x_{0}+\beta \alpha x_{1}\right)+\frac{\lambda \beta}{4}\left(x_{2}+\beta x_{0}-\beta \alpha x_{1}\right) \ln \left|\frac{x_{2}+\beta x_{0}-\alpha \beta x_{1}}{x_{2}-\beta x_{0}+\alpha \beta x_{1}}\right|+\right. \\
& \left.C_{2}\left(x_{2}+\beta x_{0}-\alpha \beta x_{1}\right)\right\}, \text { for } C_{1} \beta=-1 .
\end{aligned}
$$

If $\alpha \neq 1$ and $\frac{1}{1-\alpha^{2}}=-\beta^{2}<0$, equation (4.3) has the solution

$$
\frac{1}{\psi}=\frac{\lambda \beta^{2}\left(C_{1} \omega-1\right)}{1+\beta^{2} C_{1}^{2}}+C_{2} \sqrt{\omega^{2}+\beta^{2}} \exp \left\{-\beta C_{1} \arctan \frac{\omega}{\beta}\right\} .
$$

The corresponding solution of equation (1.2) is

$$
\begin{aligned}
u= & -\ln \left\{\frac{\lambda \beta^{2}\left(C_{1} x_{2}-x_{0}+\alpha x_{1}\right)}{1+\beta^{2} C_{1}^{2}}+\right. \\
& \left.C_{2} \sqrt{x_{2}^{2}+\beta^{2}\left(x_{0}-\alpha x_{1}\right)^{2}} \exp \left\{-\beta C_{1} \arctan \frac{x_{2}}{\beta\left(x_{0}-\alpha x_{1}\right)}\right\}\right\} .
\end{aligned}
$$

4.2. $<\alpha P_{0}+P_{1}, P_{2}, P_{3}, J_{23}>(\alpha \geq 0): u=\varphi(\omega), \omega=x_{0}-\alpha x_{1}$,

$$
\begin{equation*}
\left(1-\alpha^{2}\right) \ddot{\varphi}+\lambda \dot{\varphi} \exp (\varphi)=0 . \tag{4.4}
\end{equation*}
$$

If $\alpha=1$, then $\varphi=C$. If $\alpha \neq 1$, then the expression

$$
\int \frac{d \varphi}{\lambda \exp (\varphi)+C_{1}}=\frac{\omega}{\alpha^{2}-1}+C_{2}
$$

is a general solution of equation (4.4). Hence it appears that

$$
\varphi=\ln \left\{\frac{1-\alpha^{2}}{\lambda\left(\omega+C_{2}\right)}\right\} \text { for } C_{1}=0
$$

and

$$
\varphi=\ln \left\{\frac{C_{1} C_{2} \exp \left\{\frac{C_{1} \omega}{\alpha^{2}-1}\right\}}{1-\lambda C_{2} \exp \left\{\frac{C_{1} \omega}{\alpha^{2}-1}\right\}}\right\} \text { for } C_{1} \neq 0
$$

The functions

$$
u=\ln \left\{\frac{1-\alpha^{2}}{\lambda\left(x_{0}-\alpha x_{1}+C\right)}\right\} \text { and } u=\ln \left\{\frac{C_{1} C_{2} \exp \left\{\frac{C_{1}}{\alpha^{2}-1}\left(x_{0}-\alpha x_{1}\right)\right\}}{1-\lambda C_{2} \exp \left\{\frac{C_{1}}{\alpha^{2}-1}\left(x_{0}-\alpha x_{1}\right)\right\}}\right\}
$$

are corresponding solutions of equation (1.2).
4.3. $<\alpha P_{0}+P_{3}, J_{12}, D>(\alpha \geq 0): u=\varphi(\omega)-\ln \left\{x_{0}-\alpha x_{3}\right\}, \omega=\frac{x_{1}^{2}+x_{2}^{2}}{\left(x_{0}-\alpha x_{3}\right)^{2}}$,

$$
4 \omega\left(\left(1-\alpha^{2}\right) \omega-1\right) \ddot{\varphi}+\left(6\left(1-\alpha^{2}\right) \omega-4\right) \dot{\varphi}-\lambda(2 \omega \dot{\varphi}+1) \exp (\varphi)+1-\alpha^{2}=0 .
$$

4.4. $A O(3) \oplus<D>: u=\varphi(\omega)-\ln x_{0}, \omega=\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{x_{0}^{2}}$,

$$
4 \omega(\omega-1) \ddot{\varphi}+6(\omega-1) \dot{\varphi}-\lambda(2 \omega \dot{\varphi}+1) \exp (\varphi)+1=0
$$

References

[1] Fushchych W.I. and Serova M.M., On some exact solutions of the nonlinear equations which are invariant under Euclidean and Galilei groups, In: Algebraic-theoretical methods in mathematical physics problems, Kiev, Institute of Mathematics, 1983, 24-54.
[2] Rosen G., Solutions of certain nonlinear wave equations, J. Math. Phys., 1966, V.45, N 3-4, 48-56.
[3] Fushchych W.I., Shtelen V.M., Serov N.I., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer Academic Publishers, 1993, 400p.
[4] Ovsyannikov L.V., Group Analysis of Differential Equations, New York, Academic Press, 1982, 400p.
[5] Olver P. Applications of Lie Groups to Differential Equations, New York, Springer-Verlag, 1986, 400p.
[6] Patera J., Winternitz P. and Zassenhaus H., J. Math. Phys., 1975, V.16, N 8, 1597-1624.
[7] Fushchych W.I., Barannik L.F., Barannik A.F., Subgroups Analysis of the Galilei, Poincaré Groups and Reduction of Nonlinear Equation, Kiev, Naukova Dumka, 1991, 304p.
[8] Lang S., Algebra, New York, Addison-Wesly Publishing Company, Reading, Mass., 1965, 564p.
[9] Beckers J., Patera J., Perroud M. and Winternitz P., Subgroups of the Euclidean group and symmetry breaking in nonrelativistic quantum mechanics, J. Math. Phys., 1977, V.18, N 1, 72-83.

