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Abstract
The paper is devoted to application of the noncommutative integration method for
linear partial differential equations. This method is based on the noncommutative
integration theory for finite-dimensional Hamiltonian systems and is generalized for
so-called functional algebras.

Introduction

In Ref. [1] a noncommutative integration method (NIM) has been developed for linear
partial differential equations (LPDEs). The method is based on the noncommutative inte-
gration theory for finite-dimensional Hamiltonian systems (see Refs. [2, 3] and literature
cited there for more details) and notion of a λ-representation of Lie algebras introduced
in Ref. [1].

Integration of a given equation,

H(x, ∂x)ψ(x) = 0, x ∈ Rm, (1)

is handled using the noncommutative set L of operators satisfied special conditions.
We use basic notions and notations of Ref. [1]. Remember that by integrability of Eq.

(1) we mean the construction of a parametric family of solutions ψ(x, λ), λ ∈ Λ ⊂ Cm−1,
where Λ is a domain in the parameters space Cm−1, x ∈ Qm ⊂ Rm, Qm is a domain in
the space Rm, ψ ∈ C∞(Qm × Λ). All considered functions are taken to be smooth due
to locality of our constructions, in particular, ψ ∈ C∞(Q × Λ). The local completeness
of the solutions family ψ(x, λ) is equivalent to availability of (m− 1) essential parameters
λ in the solution ψ(x, λ), by definition. The case, when L is a Lie algebra of symmetry
operators of the equation under consideration constrained by the condition

dimL+ indL = 2(m− 1), (2)

is considered in Ref. [1]. Here dimL, indL are a dimension and index of the algebra L,
respectively, m is the number of independent variables in (1). If L is a Lie algebra of a
general type, Eq. (1) can be reduced to the equation

H̃(u, ∂u, λ)ψ̃(u, λ) = 0 (3)

with a lower number of independent variables uα, α = 1, . . . ,m′ ,

m′ = m− 1
2
(dimL+ indL).
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A principal possibility of the basis construction in the solutions space has been shown
in Ref. [1] for the Klein-Gordon equation in a curved space when this equation is not
integrated by the method of separation of variables.

The aim of this paper is to apply NIM for generalized algebraic constructions, so-
called functional algebras (or, in shorthand form, F -algebras), for which commutators of
generators are, in general, nonlinear functions of generators (linear functions correspond
to a Lie algebra). It happens to be possible because notions, introduced for Lie algebras
and required for integrability, are inherited by F -algebras. The special case of F -algebras
are quadratic algebras [4, 5]. They have found a wide application in quantum field theory
and used for integration of ordinary differential equations [6–8]. In the present paper
quadratic algebras are applied for integration of LPDEs.

Symmetry F -algebras in the noncommutative
integration method

Consider a space F of linear differential operators acting in the functional space C∞(Qm).
Functionally independent operators Yi, i, j, l, r = 1, . . . , k = dimF form a basis of the
space F and satisfy the following commutation relations:

[Yi, Yj ] = cij(Y ), (4)

where cij are symmetrical functions of Yi. By definition, functions cij satisfy the Jacobi
identity:

[Yl, cij(Y )] + [Yi, cjl(Y )] + [Yj , cli(Y )] = 0. (5)

We name such a space F with the operation (4) the F -algebra. This notion is similarly to
Poisson algebras which are used in the theory [9] of finite-dimensional Hamiltonian sys-
tems. Linear functions cij(Y ), = clijYl,clij = const correspond to a Lie algebra, if cij(Y ) are
quadratic in Yi then F−algebra is referred to as quadratic algebra [4–8]. Noncommutative
integration of Eq.(1) using F -algebras presents additional difficulties in comparison with
the Lie algebras case. It is connected with solution of some auxiliary equations of high
orders. This problem becomes easier for quadratic algebras. By this reason these last are
of special interest in NIM.

Let U(F ) be a linear space with the basis

Xα1...αr =
1
r!

∑
σ∈Sr

Yασ(1)
. . . Yασ(r)

, Xα1...αr |r=0 = 1.

Here r = 0, 1, . . .; αr = 1, . . . , k. Summation goes with respect to all permutations σ of
the permutation group Sr of the set (1, . . . , r). Clearly, the U(F ) is an associative algebra
relative to standard multiplication of linear differential operators.
Definition 1. U(F ) is called the envelope algebra of F -algebra.

Let us also introduce a dual space U∗(F ). Its elements are linear functionals ξ :
U(F ) → C1,

ξ(Xα1 . . .αr) = ξ
( 1
r!

∑
σ

Yασ(1)
. . . Yασ(r)

)
=

1
r!

∑
σ

ξ(Yασ(1)
) . . . ξ(Yασ(r)

) = ξα1 . . . ξαr ,
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where ξαl
= ξ(Yαl

).
It is easy to redefine basic notions of the general theory of Lie algebras for F -algebras.
The mapping ad : F → F is:

adX(Y ) = [X,Y ], X, Y ∈ F.

Coadjoint representation ad∗ is given by the equation:

ad∗Xξ(Y ) = ξ([X,Y ]), ∀ξ ∈ F ∗, X, Y ∈ F.

An annulet of the covector ξ is defined as follows:

Ann ξ = {X ∈ F | ad∗Xξ = 0}.

By definition, the covector ξ is a generic position one, if the dimension of its annulet is
minimal. Index of F -algebra (indF ) is an annulet dimension of a generic-position covector:

indF = inf
ξ∈F ∗

(dimAnnξ).

Since dim Ann ξ = dimF − rank(ξ(cij(Y )), then

indF = dimF − sup
ξ∈F ∗

rank(ξ(cij(Y )).

To build up an irreducible representation of F -algebra we need a set of differential
operators l(λ, ∂λ, J) acting in the space C∞(Qm × Λ) such that [li, lj ] = −cij(l) with the
same functions cij(l) that are in (4). Here λ ∈ Cs, s = 1

2(dimF−indF ), J ∈ Cr, r = indF .
All Casimir operators, i.e. elements of center Z(U(F )) of the algebra U(F ), are func-

tions of the variables J1, . . . , Jr in this representation.
Definition 2. Representation of F -algebra by operators li is said to be λ-representation
of this algebra.

The basis of a representation space VJ of F -algebra is determined by the following
system:

Yi(x, ∂x)ψJ(x, λ) = li(λ, ∂λ;J)ψJ(x, λ). (6)

The parameters J enumerate the representation, and the parameters λ do basis vectors
of the representation space VJ . The compatibility of the system (6) and also irreducibility
and exactness of the F -algebra representation are due to the construction λ-representation.
In particular, the function ψJ(x, λ) is an eigenfunction of the Casimir operators:

Kp(Y )ψJ(x, λ) ≡ ωp(J)ψJ(x, λ), p = 1, . . . , r.

Here ωp(J) are mutually independent functions of the parameters J1, . . . , Jr.
To build up the λ-representation more effectively, it is necessary to classify F -algeb-

ras into semi-simple, solvable, nilpotent, etc. For this purpose we define the ideal N of
F -algebra such that

[N,F ] ⊂ U(N) ↔ [U(N), F ] ⊂ U(N).

The sequence of ideals F (n) is introduced by analogy with Lie algebras: F (0) = F , F (n) is
a minimal subspace of the space F (n−1) such that [F (n−1), F (n−1)] ⊂ U(F (n)). If F (n) = 0
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for some n, then we call such F -algebra solvable. Obviously, every solvable F -algebra
contains a commutative ideal (if F (n) = 0, then F (n−1) is the commutative ideal). An
F -algebra having no commutative ideals is called semi-simple.

Similar to the Lie-algebras theory, an analogue of the Levy-Maltsev theorem can be
formulated as follows: F -algebra is expanded into the semi-direct sum of solvable (R) and
semi-simple (S) algebras,

F = R / S; [S, S] ⊂ U(S), [R,R] ⊂ U(R), [R,S] ⊂ U(R).

Let us introduce one more sequence of ideals F(n): F(0) = F , F(n+1) is the minimal
subspace F(n) such that [F, F(n)] ⊂ U(F(n+1)). If F(n) = 0 for some n, then we call such
an F -algebra nilpotent. Since F (n) ⊂ F(n), every nilpotent F -algebra is solvable. The
opposite is not true. From the definition, it follows that every nilpotent F -algebra has a
nontrivial center (if F(n) = 0, then F(n−1) = Z(F ) is the center).

The Casimir operators of semi-simple F -algebras are polynomials in operators Xα. For
solvable F -algebras, the Casimir operators usually have a finite order, and to search for
them would be a separate problem.

Let us turn to the integration problem of a scalar equation. An analogue of the
noncommutative integration theorem is formulated in the following way: the Eq. (1)
allowing a symmetry F -algebra such that

dimF + indF = 2(m− 1), (7)

is integrable in the noncommutative sense.
An integration algorithm for the Eq.(1) using symmetry F -algebra of operators Yi is

similar to one considered in Ref. [1], when operators Yi form a Lie algebra.
The F -algebras formed by three operators Yi of the first order and one operator X of

the second order are considered in this paper. Commutative relations for such algebras
become

[Yp, Yq] = clijYl,

[Yp, X] = ApX + cijp YiYj + cipYi + cp.

Here cipq, Ap, c
ij
p = cjip , c

i
p, cp are structure constants of a square F -algebra and the satisfy

Jacobi identity. All indices run from 1 to 3. All the structure constants are tensors with
respect to basis transformation in the Lie algebra generated by operators {Y1, Y2, Y3}.
Also allowable is the transformation

X → aX + bpqYpYq + cpYp + c, a 6= 0.

Classification of four- and five-dimensional square-algebras of the above structure is
presented in the Appendix. They admit to integrate differential equations with four inde-
pendent variables. Due to eq.(7) these F -algebras are subject to the condition:

dimF + indF = 6. (8)

Moreover, F -algebras including the commutative three of operators not higher than the
second order are not presented in Appendix because equations possessing such threes of
operators are integrated by the separation of variables method.
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Consider the case 2.e) of the four-dimensional square-algebra from the Appendix as
a nontrivial example. This square-algebra is solvable, {X,Y2} is the commutative ideal.
Assume that Yi are differential operators of the first order and X is of the second order
one with four independent variables. Let us find the metric tensor of a non-Stackel type
such that

[∆, X] = [∆, Yi] = 0. (9)

Here ∆ =
√
g∂xα(gαβ/

√
g)∂xβ , g ≡ det(gαβ). The conditions (8), (9) allow us to integrate

the Klein-Gordon equation in a Riemannian space with the metric tensor gαβ :

Hϕ(x) = (∆− ε)ϕ(x) = 0. (10)

But, the non-Stackel-type metrics exists not for any square-algebra. In particular, in our
case (2.e) of the Appendix) we must put b = 0.

Operators Yi, X and non-zero components of the metrics gαβ are of the form

Y1 = ∂2, Y2 = ∂3, Y3 = −∂1 + x2∂2;

X = exp(−x1)
{
(4/(x4)2)∂11 + 2(α+ β/(x4)2)∂13 + (4/x4)∂14+

[1
4
(2αβ + β2/(x4)2) + x2 exp(x1)

]
∂33 + (αx4 + β/x4)∂34+

∂44 − 4/(x4)2∂1 − β/(x4)2∂3 − 1/x4∂4

}
;

g11 = −4/(x4)2, g13 = α− β/(x4)2, g23 = −α3(x4)2 exp(−x1)/2,

g33 = γ − α2(x4)2/2− β2/(4x4)2, g44 = 1.

Here, α, β, γ are arbitrary constants; ∂i ≡ ∂/∂xi, ∂ij ≡ ∂2/∂xi∂xj .

Since operators Y1, Y2 form a commutative ideal, the functions of one variable λ only
and two parameters J1, J2 correspond to them in the λ-representation. The remaining
operators are found easily from commutation relations. Finally, we obtain:

l1 = eλ(∂λ + J), l2 = ω, l3 = ∂λ, L = ω2e−λ.

Here, the redesignations: λ1 = λ, J1 = J, J2 = ω are made for convenience. Operator L
corresponds to operator X. The first three equations of system (6) give:

ϕJω(x, λ) = exp[J(x1 − λ) + ωx3]ψJω(u, x4),

where u ≡ ex
1
(x2 − e−λ). Substituting the function ϕJω(x, λ) into the remaining equa-

tion of system (6) and into (10) we obtain two equations of the second order with two
independent variables for the function ψJω(u, x4):

X̃(u, x4, ∂u, ∂x4)ψJω(u, x4) = 0, (11)

∆̃(u, x4, ∂u, ∂x4)ψJω(u, x4) = εψJω(u, x4). (12)
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The Eqs. (11), (12) are compatible since operator ∆̃ is a symmetry operator for the
operator X̃ : [∆̃, X̃] = RX̃; here R is some operator.

Eqs. (11),(12) cannot be solved by the separation of variables method because the
conditions of the appropriate theorem (see Ref. [10]) are not fulfilled. In particular, there
is no function f such that [∆̃, fX̃] = 0. In our example the system (6) possesses an
invariant, i.e., the function ξ that [Yi − li, ξ] = [X − L, ξ] = 0. Since ξ = x4/u, then
[X̃, ξ] = 0. Consider the first- order operator Y = [∆̃, ξ]. From the Jacobi identity we
have: [Y, X̃] = [R, ξ]X̃, i.e. Y is the first-order symmetry operator for Eq. (11). By
transformation of variables and the function we bring the operator Y into the diagonal
form Y = ∂/∂η. As this takes place, the operator X will depend on one variable. Solving
Eq. (11) and after that Eq. (12), we finally obtain the Klein-Gordon equation basis of
solutions in the following form:

ϕJω(x, λ) = exp[J(x1 − λ) + ωx3 + S] · {h+(ξ) exp(σ+(ξ)h) + h−(ξ) exp(σ−(ξ)h)},

ξ = x4(ex
1
(x2 − e−λ))−

1
2 , η = (x4)2/ξ, σ±(ξ) = ω[−α3ξ3 − 4αξ ∓ (α2ξ2 − 4)

1
2 ]/8,

h±(ξ) = h0
± exp

[∫
C(ξ)±D(ξ)
B(ξ)±A(ξ)

dξ

]
, h0

± = const;

A(ξ) = αξ(α2ξ2 − 4)
5
2 , B(ξ) = 2(α2ξ2 − 4)2,

S(ξ, η) = −(J + ωβ/4) ln η + ωαηξ(1 + α2ξ2/2)/4,

C(ξ) = (α2ξ2 − 4)
1
2 [α5βξ4/4 + α5ξ4J − α3βωξ2 + 2α3ξ2+

2α2γωξ2 − 16αJ − 8J − 8γω − 2ε(α2ξ2 − 4)/ω],

D(ξ) = α4βωξ3/2 + 2α4Jξ3 − 4α2βωξ − 16α2Jξ − 8α2ξ + 8βω/ξ + 32(J + 1)/ξ.

In conclusion we note that the obtained solution ϕJω(x, λ) is the eigenfunction of the
four commutative operators:

Y2ϕ = ωϕ, (Y3Y
2
2 − Y1X)ϕ = −Jω2ϕ,

Xϕ = ω2e−λϕ, ∆ϕ = εϕ.

But, since the Casimir operator of the square-algebra under consideration, Y3Y
2
2 − Y1X,

has the third order, the separation of variables is impossible in this system.

Appendix

Four-dimensional square-algebras

1. [Y2, Y3] = Y1, ( {Yp, Yq} ≡ 1
2(YpYq + YqYp)),

a) [Y2, X] = aY 2
3 + Y2 + b, [Y3, X] = cY 2

2 − Y3 + d, a, c 6= 0;
b) [Y2, X] = 2{Y2, Y3}+ aY 2

3 + b, [Y3, X] = cY 2
2 − Y 2

3 + dY2 + e;
c) [Y2, X] = aY 2

3 + bY3, [Y3, X] = cY 2
2 + dY2.
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2. [Y1, Y3] = Y1 [Y3, X] = X,

a) [Y1, X] = Y 2
2 + aY 2

3 + b, a 6= 0; b) [Y1, X] = {Y2, Y3}+ b;
c) [Y1, X] = Y 2

2 + aY3, a 6= 0; d) [Y1, X] = Y 2
3 + aY2;

e) [Y1, X] = Y 2
3 + b; f) [Y1, X] = Y 2

2 + b;
g) [Y1, X] = Y2; h) [Y1, X] = Y3;
i) [Y1, X] = 1.

Five-dimensional square-algebras

1. [Y2, Y3] = Y1, [Y1, Y4] = αY1, [Y2, Y4] = Y2,
[Y3, Y4] = (α− 1)Y3, α 6= 0, 1.

a) [Y2, X] = aY 2
3 + Y2, [Y3, X] = bY 2

2 − Y3, [Y4, X] = c
if α = 3

2 , then b = 0, if α = 3, then a = 0;
b) [Y4, X] = −X, [Y2, X] = aY 2

2 + b{Y2, Y3}+ cY 2
3 + dY1,

[Y3, X] = eY 2
2 − 2a{Y2, Y3} − 1

2bY
2
3 + fY1, α = 2;

c) [Y4, X] = −1
2X, [Y2, X] = 2a{Y2, Y3}+ bY1 + cY3

[Y3, X] = −aY 2
3 + dY2, α = 3

2 ;
d) [Y4, X] = −X, [Y2, X] = Y 2

2 , [Y3, X] = −2{Y2, Y3}+ aY1, α 6= 2, 3;
e) [Y4, X] = −1

3X, [Y2, X] = Y 2
3 , [Y3, X] = aY2, a 6= 0, α = 5

2 ;
f) [Y4, X] = X, [Y1, X] = Y3, [Y2, X] = +2Y4, α = 1

2 ;

2. [Y1, Y4] = Y1, [Y2, Y3] = Y2

a) [Y2, X] = Y1, [Y3, X] = X, [Y4, X] = −X;
b) [Y2, X] = Y 2

1 , [Y3, X] = X, [Y4, X] = −2X;
c) [Y1, X] = {Y2, Y4}, [Y3, X] = −X, [Y4, X] = X;
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