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Abstract

A relativistic two-particle system with time-asymmetric scalar and vector interactions
in the two-dimensional space-time is considered within the frame of the front form of
dynamics using the dynamical symmetry approach. The mass-shell equation may be
represented in terms of the nonlinear canonical realization of the Lie algebra of the
group SO(2,1). This allows us to quantize the system and to obtain a closed form for
the mass spectrum.

Introduction

The classical relativistic direct-interactions theory (RDIT) [1-2] allows to construct a wide
class of various models of interacting particle systems [3-5]. The models connected with
the field theory via Fokker-type action integrals evoke a particular interest [5-7]. Usually
they lead to the functional-differential equations of motion. But there exists an exception
connected with choice of a time-asymmetric Green’s function of the d’Alembert equation
in the Fokker-type [5-7] action integrals. For a two-particle system such a choice gives an
ordinary second-order differential equations of motions . In this case one particle responds
only to advanced fields and the other responds only to retarded fields. On the classical
level, such models have been considered in the four-dimensional space-time [8, 9] as well
as in the two-dimensional one [5, 6, 10]. These models can also be considered as some
approximation of the time-symmetric theories.

After quantization of the classical RDIT, the canonical generators of the Lie algebra of
the Poincaré group P(1,3) are replaced with the operators, determining the unitary rep-
resentation of this group in a certain Hilbert space. The Poincaré-invariance conditions
lead to complicate dependence of interaction potentials on coordinates and momenta.
Therefore, relativistic Hamiltonians usually cannot be represented as a sum of terms de-
pending only on commutative operators . As a result, the quantization problem does not
have a unique solution. Different quantization methods may result in different expressions
for observable quantities. The quantization of the classical Hamiltonian description of
the N-particle system in the front form of dynamics in a two-dimensional space-time has
been carried out in [11] according to the Weyl rule. Such a treatment which is based on
the positivity condition of momentum variables coordinates with the quantum results [16,
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7]. But this condition is violated by vector interaction on the classical level in the at-
traction case. According to the Weyl rule, the Heisenberg algebra is a basic algebraic
structure, realized on a classical level by canonical variables in terms of the Poisson brack-
ets {Zq,pp} = dgp- On a quantum level, this algebra is realized by Hermitean operators in
terms of the commutator. As was demonstrated in [12], such a treatment is not suitable
in the case, where some of canonical variables are determined only on the finite or half-
infinite interval. The matter is that discussed variables cannot be generators of regular
canonical transformations in the whole phase space. In the quantum case corresponding
operators are not self-adjoint. Therefore some Lie algebra which is not isomorphic to the
Heisenberg algebra can be chosen as a basic algebraic structure [12].

In this paper we consider quantization procedure of the two-particle system in the two-
dimensional space-time in the front form of dynamics with interactions corresponding to
scalar and vector massless fields. The classical mass-shell equation can be represented as a
linear one on the Lie algebra so(2,1) realized by the functions of canonical variables in terms
of Poisson brackets. We consider this algebraic structure as a basic one. The quantization
procedure consists in substitution of classical functions, forming the so(2, 1) algebra basis,
by corresponding quantum-mechanical operators. Using only the commutation relation of
the algebra so(2,1), we obtain mass spectra by means of Barut’s algebraic method [13,14]
without specifying a realization of operators, and we will discuss construction of the state
vectors in a abstract Hilbert space.

1 Scalar and vector interactions

The front form of dynamics in the two-dimensional space-time My with coordinates (z°, x)

corresponds to the foliation My by isotropic hyperplanes
=1 (1.1)

The quantity 7 is the evolution parameter of the system [6,10]. The motion of particles is
described by functions x,(7), and the parametric equations of world lines have the form
r = 24(7), 2¥ = 7 — 24(7). The functions z,(7) are defined as solutions of the Hamilton
principle 65 = 0 with an action integral

S = /dTL. (1.2)

The general structure of the Lagrange function L is determined by the Poincaré-invariance
conditions. This permits in the present case the solutions, which do not contain derivatives
higher than first order. Thus, the Lagrangian for a N-particle system can be written in
the form [10]

N
L =— Z Maka + Z TabVab(Tabk‘a_l, Tabkgl), (1.3)
a=1 a<b
where k, = 1 —2v4,v, = dxg/dr,rep = T4 — xp,0,0 = 1, N, and V,;, are arbitrary
functions of indicated arguments. As a consequence of general properties of the Lagrangian
mechanics, invariance under the Poincaré group P(1,1) leads to the three conservation
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laws: of the energy F, of the momentum P, and of the center-of-inertia integral of motion
K. They have the form [10]

N N N
OL oL OL
E = E UaaT - L, P = E a’l} + E, K=—-7P— E .’EaaT. (14)
a=1 a=1""¢ a=1 a

a

In the two-dimensional space-time in the front form for the system of N particles
interacting through a local relativistic field of rank ¢, in such a way that one particle
responds only to retarted field and the other particle responds to advanced field, Fokker-
type action integrals [11-13] lead to Lagrangian [10]

=— make — — ) ; = —+ —. )
P A A T
Let us consider two-particle systems. In this case momenta are defined by formulae
Mg « ktgz g €—1‘ _ .
pa_k—a+m(1+£+(1+6)k—g)(§) . a=12 a=3-a (1.6)

where a = g1g2,7 = 12,0 = d12. Solving the system (1.6) with respect to velocities v, and
substituting the result in the expressions (1.4) yield canonical generators of the Poincaré
group P(1,1). Further we consider the cases ¢ = 0,1, for which such a procedure can be
carried out explicitly. Using quantities P = Py + P more convenient in the front form |,
we obtain

ik mip o+ Aga/lr
" b (<Df2/l + BuaPy /|

Py = p1 + p2, K = x1p1 + z2p2, (1.7)

where

Ay =2mime; Ay = —m% — m%; By=0; By=-1. (1.8)
Quantities (1.7) satisfy the following Poisson brackets relations

{Py,P_} =0, {K,P.}==+Py. (1.9)

The classical expression for the total mass squared function M? = P, P_ has vanishing
Poisson brackets with all generators (1.7).

The separation of external and internal motion is carried out by the choice Py and
@ = K/P; as new external canonical variables. As internal variables, we choose

Mop1 — M1P2 P

A o S ) e _
g_ P+ ’ q=T m ) {qaé} - 17 (110)

where m = mj + mgy. Since sign(r) is an integral of motion, one can only consider the

case 7 >0 (g > 0). Then, in terms of variables (1.10) the function M? which determines
the inner motion of the system has the form

M? =X/Y, (1.11)
where

X = m(mmimaq + m(me — m1)qé + aAy), (1.12)
2
a

Y = mimaq + (ma — mq)g€ — (q§2 +(=1)* . ) + amBy. (1.13)
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2 The quantization procedure

The standard approach to quantization of the present classical problem consists in the
establishing of correspondence of the P(1.1) Poincaré group generators (1.2) with the
Hermitean operators, determining unitary representation of this group in some Hilbert
space. This determines a squared mass operator M? of the system. The equation

M%) = M%) (2.1)

describes the stationary states of inner motion. This method has been used in the two-
dimensional space-time in front form for a number of simple systems [11]. In these papers
the Weyl quantization rule and the momentum representation in the Hilbert space [4,11]

N
HY = L2RY;duk), duk; = TI O(pa)dpa/pa have been used. But a number of difficul-

a=1
ties arise when one applies this quantization rule for particle systems with the field-type

interactions. The first of them is the violation of the positivity condition of momentum
variables p, > 0 for the vector interaction. The second difficulty is a too cumbersome
form of the integral equations which are derived from Eq. (2.1).

We avoid this difficulties writing down the mass-shell equation (1.11) in the form

Y(q,6)M? - X(g,€) = 0. (2.2)

Now we introduce the following functions of canonical variables

2 2
Ty =5 (pe€” + 2+ (—1)”‘;), =5 (9e - 5+ <—1>fﬁj)’ fa=at, (23)

where 3 is an arbitrary constant that one needs for dimensional reasons and vanishing in
the expressions for observable quantities. Using (2.3) turns (2.2) into

adyg +bJ1+dJo+ Cp =0, (2.4)
where following notation are introduced

a = (M?+ BPmymy(m® — M?))/B, b= (M?— FPmymy(m® — M?))/B,
m% + m% + M?\¢
2mima ) ’

d = (my —m1)(m? = M?),  Cy = 2a(=1)" mmims (2.5)

Functions (2.3) span, under Poisson bracketing, the Lie algebra of the group SO(2,1)
{Jo, i} = Jo, {J1, J2} = —Jo, {J2, Jo} = Ji. (2.6)

We demand the preservation of linear relation (2.4) among generators of the group SO(2.1)
after quantization. Hence, we replace functions (2.3) with Hermitean operators obeying
the commutation relations of the so(2,1) Lie algebra

[Jo, Ji] = iJa, [y, Jo] = —iJo, [Ja, Jo] = iy, (2.7)
and obtain the following quantum-mechanical equation:

(aJo + bJy + dJo + Cp)p = 0. (2.8)
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A general structure of the mass spectrum can be found on the base of the relations (2.7)
without specifying the realization of the operators Jy, J1, J2. We shall use Barut’s dynam-
ical group method [13,14]. If we put

b = efix1(jo*j1)e*iX2j2¢’ (2.9)
and choose, for the case |m; —ma| < M <m,

d
a+b’

X1 = tanh yo = R/K, (2.10)

where

pe pe
Keao _ 7 2.11
R RN L A TP (211)

then we obtain

(Va2 — b2 — d2Jy + Cp)y' = 0. (2.12)
Operator .Jy as the generator of the compact subgroup SO(2) has a discrete spectrum,

Joln >=n|n > . (2.13)
The Casimir operator of the group SO(2,1)

Q=J:-Jt-Jz (2.14)

and its eigenvalues Q = ¢(p + 1) determine the eigenvalue n of Jy [15]. In the classical
case Q = (—1)%a?. Quantity Q is the only element of theory which remains undetermined
in the framework of a purely algebraic approach. Thus, if 1)’ is an eigenstate of Jy, we
obtain

mny/(m? — M2)(M? — (my —m2)?) = —C. (2.15)

Solutions of Eq.(2.15) exist in the case n > 0 for £ = 0 when a = g192 < 0 and for £ =1
when M? > m? +m3,a < 0 or M? < m? +m3,a > 0. They have the form

(ME)2 = m2 +m2 + 2myma(1 — (—1)fa?/n2) V2, (2.16)

The scattering states are also contained in Eq. (2.8). In this case we diagonalize the
operator in the Lh.s. of Eq. (2.8) to Jj, which has a continuous spectrum. We put
tanh y2 = K/R, that gives

(M;\—L)l2 = m? 4+ m3 £ 2myma(1 — (—1)2042/)\2)(_1)”2. (2.17)

The vector-type spectra have been obtained in [13, 14, 16] on the base of an infinite-
component wave equation with the dynamical group O(4,2) in the four-dimensional space-
time. It is interesting to denote that such an equation in the rest frame has the form (2.8)
and can be obtained in our approach by immediate quantization of the time-asymmetric
electromagnetic interaction in the frame of Hamiltonian description of a directly interact-
ing particle system in the front form of dynamics. The correspondence condition with the
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one-particle problem in an external field fixes a classical value of () on the quantum level.

The branch (M,',)? has a correct nonrelativistic limit contrary to the branch (M, ,)? .

Using the operators J* = J; + iJy and commutation relation (2.7) only, one can
construct normalized eigenvectors of Jy, corresponding to the discrete spectrum states in
some abstract Hilbert space [15]. This gives us the normalized solutions of Eq.(2.8) in the
form

_. = _ fay _. S A_['_ s
g > exp (—ix1(Jo — J1)) exp (—ix2J2)(JT)%|ny >’ (2.18)

Sf[;(j + 1) +14+/1TF+4Q)
Jt

where |ny > is the normalized solution of the equation J “|ny >= 0. Using commutation
relation (2.7) easy proves that vectors s > form an orthogonalized system: < ¢y|hs >=
dss. In such a purely algebraic way, mean values for some quantities can be calculated :

< s|qlps >= _2n§M32/Clv < ¢S|q2’¢s >=< 1s|q|vs >2 (3— Q/ng)/2 (2.19)

The nondiagonal elements can be obtained too.

Conclusion

The quantization problem of the relativistic Hamiltonian theory does not have a unique
solution. This is related to the complicated dependence of interaction potentials on coordi-
nates and momenta. The Hamiltonian formalism of the front form in the two-dimensional
space-time is not an exception. One of possible quantization approaches in this case is
the Weyl rule. But for the two-particle system with time-asymmetric scalar and vector
interactions such a way leads to difficulties. They are avoided by writing down the mass-
shell equation as a linear one on the Lie algebra so(2.1) . We consider this algebraic
structure as a basic one. The quantization procedure replaces classical SO(2,1) generators
(2.3) with the Hermitean operators, preserving commutation relations of the Lie algebra
so(2,1). Using these relations and Barut’s algebraic method [13,14] without specifying
realization of the operators, we obtain eigenvalue and eigenstates corresponding to a dis-
crete spectrum. Such a way permits even to obtain manifest expressions for mean values of
internal coordinates. It is necessary to point out that the linear equations on Lie algebras
of dynamical groups have been postulated for description of composite electromagnetic
systems by analogy with the Dirac equation. In our approach such equations arise in a
natural way from classical Lagrangian or Hamiltonian description of a two-particle system
with the time-asymmetric scalar and vector interactions in the two-dimensional model of
the front form of dynamics.
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