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Abstract 

Many/multi-core supercomputers provide a natural programming paradigm for hybrid MPI/OpenMP 
scientific applications. In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP 
scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation 
PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale 
multithreaded BlueGene/Q supercomputer at Argonne National laboratory, and quantify the performance gap 
resulting from using different number of threads per node. We use performance tools and MPI profile and trace 
libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific 
applications with increasing the number OpenMP threads per node, and find that increasing the number of threads 
to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid 
scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much 
better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the 
FPU percentage decreases, and the MPI percentage (except PMLB) and IPC per core (except BT-MZ) increase. 
For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very 
similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used.  

Keywords: Performance analysis, hybrid MPI/OpenMP, multithreaded, BlueGene/Q. 

 

1. Introduction 
 
Many/multicore supercomputers provide a natural 
programming paradigm for hybrid MPI/OpenMP 
scientific applications. Current hybrid parallel 
programming paradigms such as hybrid MPI/OpenMP 
need to efficiently exploit the potential offered by such 
many/multicore supercomputers. When using these 
supercomputers to execute a given hybrid 
MPI/OpenMP application, one issue to be addressed is 
how many threads per node to use for efficient 

execution (Assume 1 MPI process per node for hybrid 
application execution). It is expected that the best 
number of threads per node is dependent upon the 
application characteristics and the system architectures. 
In this paper, we investigate how a hybrid application is 
sensitive to different memory access patterns, and 
quantify the performance gap resulting from using 
different number of threads per node for application 
execution on a large scale multithreaded BlueGene/Q 
supercomputer [1] at Argonne National Laboratory 
using five different hybrid MPI/OpenMP scientific 
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applications (two NAS Parallel benchmarks Multi-Zone 
SP-MZ and BT-MZ [4], an earthquake simulation 
PEQdyna [20], an aerospace application PMLB [19] 
and a 3D particle-in-cell application GTC [2]).  

There is a lot of research work in this area, which 
mainly focused on multithreaded applications on a 
single compute node [5, 11, 8]. They found that 
increasing the number of threads may saturate or 
worsen performance of multithread applications 
because concurrently executing threads compete for 
shared data (data-synchronization) and shared resources 
(off-chip bus). Some techniques in choosing the best 
number of threads for the applications are analyzed in 
[11]. In this paper, we focus on large-scale hybrid 
MPI/OpenMP applications on a large-scale 
supercomputer which consists of many compute nodes, 
and investigate their performance characteristics as 
increasing number of threads per node on different large 
number of compute nodes. 

Levesque et al. [6] observed from the AMD 
architectural discussion that when excluding messaging 
performance, the primary source of contention when 
moving from single core to dual core is memory 
bandwidth. In our previous work [19, 18], we also 
found that memory bandwidth contention is the primary 
source of performance degradation for L2 shared 
architectures such as CrayXT4 and IBM Power4 and 
Power5 systems using NAS Parallel benchmarks and 
large-scale scientific applications such as GTC as 
increasing the number of cores per node.  

Other work in this area has focused on using all 
processor cores per node. Petrini et al. [10] found that 
application execution times may vary significantly 
between 3 processors per node and 4 processors per 
node on a large scale supercomputer, ASCI Q. In our 
previous work [17, 18, 19], we conduct an experimental 
performance analysis to identify the application 
characteristics that affect processor partitioning and to 
quantify the performance difference among different 
processor partitioning schemes.  

As we found in [20], the hybrid MPI/OpenMP 
earthquake application is memory bound, and using 12 
OpenMP threads per MPI process on Cray XT5 (with 
12 cores per node) at Oak Ridge National Laboratory 
has more OpenMP overhead than using 4 OpenMP 
threads per MPI process on Cray XT4 (with 4 cores per 
node) at Oak Ridge National Laboratory for the hybrid 
execution on the same number of nodes with 1 MPI 
process per node although Cray XT5 is much faster 
than Cray XT4. This motivates us for this work. 

The experiments conducted for this work utilize a 
multicore supercomputers BlueGene/Q [1] at Argonne 

National Lab (ANL) has 16 compute cores per node. 
We investigate the performance characteristics of the 
five hybrid scientific applications, and quantify the 
performance gap resulting from using different number 
of threads per node. We use performance tools and MPI 
profile and trace libraries available on the 
supercomputer [15] to analyze and compare the 
performance of the hybrid scientific applications as 
increasing the number OpenMP threads per node. For 
the strong-scaling hybrid scientific applications such as 
SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 
threads per node results in much better application 
efficiency than using 64 threads per node, and with 
increasing the number of threads per node, the FPU 
(Floating Point Unit) percentage decreases, and the MPI 
percentage (except PMLB) and IPC (Instructions per 
cycle) per core (except BT-MZ) increase. For the weak-
scaling hybrid scientific application such as GTC, the 
performance trend (relative speedup) is very similar 
with increasing number of threads per node no matter 
how many nodes (32, 128, 512) are used. We also find 
increasing the number of threads to some extent 
saturates or worsens performance of these hybrid 
applications. 

The remainder of this paper is organized as follows. 
Section 2 discusses the architecture and memory 
hierarchy of the BlueGene/Q supercomputer. Section 3 
describes hybrid MPI/OpenMP applications used. 
Section 4 analyzes application performance 
characteristics with different number of threads per 
node in detail. Section 5 concludes this paper.  

In the remainder of this paper, all experiments were 
executed multiple times to ensure consistency of the 
performance data. Prophesy system [12] and IBM 
HPCT and MPI profiling and trace libraries [14] are 
used to collect all application performance data. Notice 
that, for a hybrid MPI/OpenMP application 
execution, one MPI process per node is applied to all 
our experiments. 
 
2. Execution Platforms  
 
In this section, we briefly describe a large-scale 
multithreaded BlueGene/Q supercomputer Vesta [1] 
used for our experiments. The supercomputer is one 
same rack of world Top 4 supercomputer Mira at 
Argonne Leadership Computing Facility [1, 13] at 
Argonne National Laboratory for early access and use. 
It has 1024 nodes with 16 compute cores per node (total 
16,384 compute cores) and 16 GB memory per node. 
Each node has a BlueGene/Q compute chip. Note that 
the compiler option “-O3 -qsmp=omp” is applied to 
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compile all our hybrid scientific applications. 
A die photograph of the BlueGene/Q compute chip 

in Figure 1 shows 18 processor units (PU00 to PU17) 
surrounding a large Level-2 (L2) cache that occupies 
the center of the chip. The chip is a System-on-a-Chip 
(SOC) ASIC with 18 4-way SMT (Symmetric 
MultiThreading) PowerPC A2 cores clocked at 1.6 
GHz. Of the 18 cores, 16 are exposed to user 
applications, 1 is used for system software functionality, 
and 1 is for yield purposes. A quad floating point unit is 
associated with each core shown in Figure 2, and 
instantiates four copies of a fused multiply-add data 
flow (MAD), creating a four-way SIMD floating-point 
microarchitecture. The first level (L1) data cache of the 
A2 core is 16 KB, 8-way set associative, with 64 B 
lines. The L1 instruction cache is 16 KB, 4-way set 
associative. 

 
Figure 1. A die photograph of BlueGene/Q Chip [3] 

 

 
Figure 2. Quad FPU in each BlueGene/Q Core [3] 

 
 

 
 
Figure 3. L2 cache of BlueGene/Q Compute Chip [9] 
 

The crossbar switch is the central connection 
structure among all the PUs, the L2 cache, the 
networking logic, and various low-bandwidth units on 
the chip. All processor cores share the L2 cache shown 
in Figure 3. To provide sufficient bandwidth, the cache 
is split into 16 slices. Each slice is 16-way set 
associative, operates in write-back mode, and has 2MB 
capacity. Physical addresses are scattered across the 
slices via a programmable hash function to achieve 
uniform slice utilization. The L2 cache provides 
hardware assist capabilities to accelerate sequential 
code as well as thread interactions. There is no L3 
cache on BlueGene/Q chip. 

The Blue Gene/Q network consists of a set of 
compute nodes (BQC chip plus memory) arranged in a 
five- dimensional (5D) torus configuration. On compute 
nodes, 10 of the 11 chip-to-chip communication links 
are used to build the 5D torus. A subset of the compute 
nodes, called bridge nodes, use the 11th communication 
link to connect with an I/O node. 

 
3. Hybrid MPI/OpenMP Scientific Applications 
 
In this section, we describe the scientific applications 
that are used throughout this paper. These applications 
include the two NAS Parallel Benchmarks Multi-Zone 
(version 3.3) BT-MZ and SP-MZ [4], and three large-
scale scientific applications PMLB [19], PEQdyna [20] 
and GTC [2]. Table 1 provides an overview of these 
applications. The first four applications (BT-MZ, SP-
MZ, PMLB, PEQdyna) are strong scaling, and the last 
one, GTC, is weak scaling. These hybrid MPI/OpenMP 
applications are written in different languages such as 
Fortran 77, Fortran 90 or C. 
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Table 1. Overview of Hybrid HPC Applications 

Application Discipline Problem 
Size 

Languages 

BT-MZ CFD Class C 

Class D 

Fortran77, 
MPI/OpenMP 

SP-MZ CFD Class C 

Class D 

Fortran77, 
MPI/OpenMP 

PMLB CFD 256x256x256 

512x512x512 

C, 
MPI/OpenMP 

PEQdyna 
Geophysic

s 

100m 

200m 

Fortran90, 
MPI/OpenMP 

GTC Magnetic 
Fusion 

100 particles 
per cell 

Fortran90, 
MPI/OpenMP 

 

The BT-MZ benchmark [4] computes discrete 
solutions of the unsteady, compressible Navier-Stokes 
equations in three spatial dimensions using the Block 
Tri-diagonal (BT) algorithm. The SP-MZ benchmark 
[4] computes discrete solutions of the unsteady, 
compressible Navier-Stokes equations in three spatial 
dimensions using the Scalar Penta-diagonal (SP) 
algorithm. Both are computational fluid dynamics 
(CFD) applications. The problem sizes used for both are 
Class C (480x320x28) and Class D (1632x1216x34). 

The PMLB application [19] is a CFD aerospace 
application using a Parallel Multiblock Lattice 
Boltzmann (PMLB) method, and is written in C, MPI 
and OpenMP. The problem sizes used in the 
experiments are 256x256x256 and 512x512x512. 

The PEQdyna [20] is a parallel finite element 
earthquake rupture simulation using the Southern 
California Earthquake Center (SCEC) TPV210 
benchmark, which is the convergence test of the 
benchmark problem TPV10. In TPV10, a normal fault 
dipping at 60° (30 km long along strike and 15 km wide 
along dip) is embedded in a homogeneous half space. 
The application is written in Fortran 90, MPI and 
OpenMP. The problem sizes used are 100m and 200m, 
which are the resolution of the 3D mesh.  

The Gyrokinetic Toroidal code (GTC) [2] is a 3D 
particle-in-cell application developed at the Princeton 
Plasma Physics Laboratory to study turbulent transport 
in magnetic fusion. GTC is currently the flagship DOE 
SciDAC fusion microturbulence code written in 
Frotran90, MPI and OpenMP. The GTC application is 
executed in weak scaling to keep a constant workload 
per processor as the number of processors increase 
using 100 particles per cell and 100 time steps. 

4. Performance Analysis  
 
In this section, we use these five hybrid applications to 
investigate their performance characteristics on the 
multithreaded BlueGene/Q supercomputer Vesta. 

4.1. Performance Analysis of SP-MZ 

 
As we described in Section 2, each node of the 
BlueGene/Q supercomputer has 16 compute cores. Each 
compute core supports four threads. Figures 4 and 5 
show the performance comparison of SP-MZ with class 
D and C on 32 and 128 nodes with different number of 
threads per node. Both have similar performance trend. 
The relative speedup increases using up to 32 OpenMP 
threads per node, then significantly decreases using 64 
threads per node. 

For instance, Table 2 presents performance (per 
node) comparison of SP-MZ with class D on 128 nodes. 
These derived metrics are for the performance per node 
by using HPCT and MPI profiling and trace libraries 
[15]. IPC per core stands for the instructions per cycle 
completed per core; GFlops stands for the total 
weighted GFlops for the node. L1 D-cache, L1P Buffer 
and L2 Cache stand for the hit rates for the loads that hit 
in L1 D-cache, L1 prefetch (L1P) buffer, and L2 cache, 
respectively. When a load misses in the L1 D-cache, the 
next place to look is the L1P buffer; if there is a miss in 
the L1P buffer, the request goes to L2 cache, and if 
there is a L2 cache miss, the request goes to the DDR 
memory. The total DDR traffic includes all load and 
store activity, which is often dominated by stream 
prefetching rather than demand loads [14]. %MPI 
stands for the ratio of the median MPI communication 
time to the total application execution time. 

From Table 2, with increasing the number of 
OpenMP threads per core from 1 to 4, the application 
execution time for using 32 threads decreases from 
37.39s to 30.07s, however, the application execution 
time for using 64 threads increases from 30.07s to 
41.58s. This results in the significant decrease in 
speedup for using 64 threads shown in Figure 5. For the 
instruction mix, the FPU percentage decreases a little 
bit with increasing the number of threads per core 
because of the overhead in the threading, for example, 
instructions executed by threads are basically waiting 
for synchronization and/or serialization. 

As shown in Figure 2, each BG/Q compute core 
supports 4 hardware threads, this results in the increase 
in IPC per core shown in Table 2 with increasing the 
number of threads per node. Because of the fixed total 
float-point operations per node, the GFlops per node for 
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using 32 threads is the highest. It is interesting to see 
that using 32 threads has a relatively low hit rate in the 
L1 data cache, but benefits from the highest hit rates in 
the L1P buffer and L2 cache, and the highest memory 
bandwidth (DDR traffic). 

Notice that the number of OpenMP threads per node 
for the hybrid SP-MZ is limited by number of cores per 
node in the underlying system and the loop sizes to 
which OpenMP parallelization is applied. When 
increasing the number of cores for a given problem size, 
decreasing parallelized loop sizes may cause some idle 
cores per node because the loop sizes are not larger than 
the number of OpenMP threads per node.  

For instance, after digging into source codes of SP-
MZ (version 3.3), we find that OpenMP parallelization 
is applied to the Z dimension of the 3D mesh, however, 

the problem size for Class D is 1632x1216x34 so that 
the maximum number of threads is 34; the problem size 
for Class C is 480x320x28 so that the maximum 
number of threads is 28. This is the limitation, which 
limits potential for OpenMP speed-up and causes more 
idle threads when using 64 threads per node. The 
threads that have no work to do are just spinning, that 
results in increasing number of instructions processed 
by the integer/load/store units. That can also affect MPI 
performance because using the threaded MPI library 
can affect scheduling of messaging threads. Overall, 
this causes the big decrease in the FPU percentage and 
the big increase in the MPI percentage for using 64 
threads. So before running these hybrid benchmarks on 
a large-scale multicore supercomputer, these limitations 
should be examined.  

 

 
Figure 4. Performance comparison of SP-MZ on 32 Nodes with different number of threads per node 

 

 
Figure 5. Performance comparison of SP-MZ on 128 Nodes with different number of threads per node 
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Table 2. Performance (per node) comparison of SP-MZ with Class D on 128 Nodes 

#Threads 16 32 64 

Runtime (s) 37.39 30.07 41.58 
Instruction Mix FPU:40.50% 

FXU:59.50% 
FPU:36.03% 
FXU:63.97% 

FPU:22.54% 
FXU:77.46% 

IPC per core 0.3654 0.5149 0.6015 
GFlops 6.260 7.847 5.687 

L1 D-cache 90.42% 89.06% 92.34% 
L1P Buffer 7.81% 8.56% 5.46% 

L2 Cache 1.45% 1.79% 1.74% 
DDR traffic (Bytes/cycle) 1.637 4.511 3.802 

%MPI 1.89% 2.59% 7.60% 
 

4.2. Performance Analysis of BT-MZ 

 
Figures 6 and 7 show the performance comparison of 
BT-MZ with class D and C on 32 and 128 nodes with 
different number of threads per node. We find the 
similar performance trend as SP-MZ has, that is, the 
relative speedup increases using up to 32 OpenMP 
threads per node, then significantly decreases using 64 
threads per node. 

Table 3 presents performance (per node) comparison 
of BT-MZ with class D on 128 nodes. Note that using 
64 threads causes the large performance degradation in 
the total execution time and MPI communication time, 
because OpenMP parallelization is applied to the Z 

dimension of the 3D mesh in BT-MZ, however, the 
problem size for Class D is 1632x1216x34 so that the 
maximum number of threads is 34; the problem size for 
Class C is 480x320x28 so that the maximum number of 
threads is 28. Similarly, this limits potential for 
OpenMP speed-up and causes more idle threads (30) 
when using 64 threads per node. The threads that have 
no work to do are just spinning, that results in 
increasing number of instructions processed by the 
integer/load/store units. That can also affect MPI 
performance because using the threaded MPI library 
can affect scheduling of messaging threads. Overall, 
this causes the big increase in the MPI percentage for 
using 64 threads. 

 

 
Figure 6. Performance comparison of BT-MZ on 32 Nodes with different number of threads per node 

 

 

Published by Atlantis Press 
Copyright: the authors 

218



 Hybrid MPI/OpenMP on aMultithreaded BlueGene/Q Supercomputer 

 

 
Figure 7. Performance comparison of BT-MZ on 128 Nodes with different number of threads per node 

 
 

Table 3. Performance (per node) comparison of BT-MZ with Class D on 128 Nodes 

#Threads 16 32 64 

Runtime (s) 57.28 42.16 127.44 
Instruction Mix FPU:37.86% 

FXU:62.14% 
FPU:36.89% 
FXU:63.11% 

FPU:30.99% 
FXU:69.01% 

IPC per core 0.4234 0.5928 0.2341 
GFlops 7.183 9.855 3.268 

L1 D-cache 94.77% 94.50% 95.08% 
L1P Buffer 3.89% 3.92% 3.22% 

L2 Cache 1.26% 1.11% 1.28% 
DDR traffic (Bytes/cycle) 0.448 3.093 1.064 

%MPI 5.50% 8.03% 68.26% 
 

4.3. Performance Analysis of PEQdyna 

 
Figures 8 and 9 show the performance comparison of 
the PEQdyna with the element sizes of 100m or 200m 
on 32 and 128 nodes with different number of threads 
per node. With increasing number of OpenMP threads 
per node, the relative speedup increases for 32 nodes 
shown in Figure 8, however, the efficiency (0.65 or 
higher) for using 32 threads per node is much higher 
than that (0.46 or less) using 64 threads. The relative 

speedup reaches the maximum using 32 threads per 
node for 128 nodes shown in Figure 9. 

From Table 4, we see that the instruction mix is 
more heavily weighted on the integer side (FXU), and 
MPI communication time dominates the total execution 
time on 128 nodes. For the strong scaling application, 
with increasing the number of threads per node from 16 
to 64, the MPI percentage increases from 73.6% to 
85.7% because the pure application computation time 
decreases and the threaded MPI library was used.  
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Figure 8. Performance comparison of PEQdyna on 32 Nodes with different number of threads per node 

 
 
 

 
Figure 9. Performance comparison of PEQdyna on 128 Nodes with different number of threads per node 
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Table 4. Performance (per node) comparison of PEQdyna with 200m on 128 Nodes 

#Threads 16 32 64 

Runtime (s) 110.29 97.81 105.48 
Instruction Mix FPU: 10.57% 

FXU:89.43% 
FPU:10.36% 
FXU:89.64% 

FPU:9.45% 
FXU:90.55% 

IPC per core 0.0999 0.1149 0.1172 
GFlops 0.375 0.423 0.392 

L1 D-cache 98.00% 98.28% 95.93% 
L1P Buffer 0.94% 0.66% 0.48% 

L2 Cache 1.03% 1.04% 3.55% 
DDR traffic (Bytes/cycle) 0.124 0.139 0.129 

%MPI 73.6% 82.9% 85.7% 
 

4.4. Performance Analysis of PMLB 

 
Figures 10 and 11 show the performance comparison of 
PMLB with the problem sizes of 256x256x256 and 
512x512x512 on 32 and 128 nodes with different 
number of threads per node. With increasing number of 
OpenMP threads per node, the relative speedup 
increases, however, the relative efficiency is very low 

for using 16 threads or more because of the dominated 
MPI communication times. 

From Table 5, we see that the instruction mix is 
more heavily weighted on the integer side, and MPI 
communication time dominates the total execution time 
on 128 nodes. The application performance (runtime) 
has smaller improvement by using more threads. This 
results in the very low efficiency. 

 

 
Figure 10. Performance comparison of PMLB on 32 Nodes with different number of threads per node 
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Figure 11. Performance comparison of PMLB on 128 Nodes with different number of threads per node 

 

Table 5. Performance (per node) comparison of PMLB with the problem size of 256x256256 on 128 Nodes 

#Threads 16 32 64 

Runtime 8.68 7.59 6.82 
Instruction Mix FPU:25.87% 

FXU:74.13% 
FPU:25.74% 
FXU:74.26% 

FPU:22.72% 
FXU:77.28% 

IPC per core 0.0523 0.0604 0.0683 
GFlops 0.510 0.585 0.582 

L1 D-cache 85.60% 85.91% 87.07% 
L1P Buffer 6.81% 6.57% 5.73% 

L2 Cache 7.55% 7.43% 7.11% 
DDR traffic (Bytes/cycle) 0.017 0.038 0.049 

%MPI 77.0% 86.50% 73.56% 
 

4.5. Performance Analysis of GTC 

Figure 12 shows the performance comparison of GTC 
on 32, 128, and 512 nodes with different number of 
threads per node. With increasing number of OpenMP 
threads per node, the relative speedup increases. 
Because the application is weak scaling (with number 
of MPI processes), the performance trend (relative 
speedup) is very similar with increasing number of 
threads per node no matter how many nodes (32, 128, 
512) are used. This is a very interesting. However, this 
application could not be executed using 32 or more 

threads per node because this causes the execution 
crash. 

From Table 6, because of the same amount of 
workload per node, with increasing the number of 
threads, the execution time decreases significantly, and 
the GFlops per node, the memory bandwidth (DDR 
traffic) and the MPI percentage increase a little bit. 
However, it is interesting to see that IPC per core 
decreases with increasing the number of threads, and 
the hit rates in L1 data cache, L1P buffer and L2 cache 
are very similar. 
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Figure 12. Performance comparison of GTC with different number of threads per node 

 
 

Table 6. Performance (per node) comparison of GTC on 128 Nodes 

#Thread 1 2 4 8 16 

Runtime 2178.0 1110.0 575.8 309.5 176.9 
Instruction Mix FPU: 38.15% 

FXU:61.85% 
FPU: 38.21% 
FXU:61.79% 

FPU: 38.17% 
FXU:61.83% 

FPU: 38.02% 
FXU:61.98% 

FPU: 37.56% 
FXU:62.44% 

IPC per core 0.3227 0.3162 0.305 0.2849 0.2525 
GFlops 0.279 0.548 1.056 1.965 3.441 

L1 D-cache 95.97% 95.97% 95.97% 95.99% 96.03% 
L1P Buffer 0.79% 0.79% 0.79% 0.79% 0.78% 

L2 Cache 2.80% 2.80% 2.80% 2.78% 2.75% 
DDR traffic (Bytes/cycle) 0.133 0.262 0.505 0.940 1.663 

%MPI 0.39% 0.59% 0.96% 1.68% 2.85% 
 

5. Conclusions 
 
In this paper, we analyzed and compared the 
performance of five hybrid scientific applications with 
increasing the number OpenMP threads per node on the 
large-scale multithreaded BlueGene/Q supercomputer 
Vesta, and quantified the performance gap resulting 
from using different number of threads per node. We 
also found that increasing the number of threads to 
some extent saturated or worsened performance of these 
hybrid applications. For the strong-scaling hybrid 
scientific applications such as SP-MZ, BT-MZ, 
PEQdyna and PLMB, using 32 threads per node results 
in much better efficiency than using 64 threads per 
node, and with increasing the number of threads per 
node, the FPU percentage decreases, and the MPI 

percentage (except PMLB) and IPC per core (except 
BT-MZ) increase. For the weak-scaling hybrid 
scientific application such as GTC, the performance 
trend (relative speedup) is very similar with increasing 
number of threads per node no matter how many nodes 
(32, 128, 512) are used.  

For these hybrid applications, how many OpenMP 
threads per node is limited by number of cores per node 
and number of hardware threads supported per core in 
the underlying system and the loop sizes to which 
OpenMP parallelization is applied. When increasing the 
number of cores for a given problem size, decreasing 
parallelized loop sizes may cause some idle cores per 
node because the loop sizes are not larger than the 
number of OpenMP threads per node. For instance, for 
SP-MZ and BT-MZ (version 3.3), we find that OpenMP 
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parallelization is applied to the Z dimension of the 3D 
mesh, however, the problem size for Class D is 
1632x1216x34. So the maximum number of threads is 
34. This limits potential for OpenMP speed-up and 
causes more idle threads when using 64 threads per 
node. So before running these hybrid applications on a 
large-scale multicore supercomputer, these limitations 
should be examined.  

This work identified the optimal number of OpenMP 
threads per node used for efficient application 
execution. This will aid in developing energy-efficient 
applications and performance-power trade-off models 
in our MuMMI project [7]. 
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