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Abstract

Checkpoint/restart has been an effective mechanism to achieve fault tolerance for many long-running
scientific applications. The common approach is to save computation states in memory and secondary
storage for execution resumption. However, as the GPU plays a much bigger role in high performance
computing, there is no effective checkpoint/restart scheme yet due to the difficulty of the GPU computa-
tion state handling. This paper proposes an application-level checkpoint/restart scheme to save and restore
GPU computation states in annotated user programs. A pre-compiler and run-time support module are
developed to construct and save states in CPU system memory dynamically, whereas secondary storage
can be utilized for scalability and long-term fault tolerance. CUDA programs with complicated com-
putation states are supported. State-related variables dissipated in various memory units are collected.
Both stack and heap are duplicated at application level for state construction. Experimental results have
demonstrated the effectiveness of the proposed scheme.

Keywords: GPU, CUDA, checkpoint/start, fault tolerance.

1. Introduction

High Performance Computing (HPC) systems are
usually used to solve more complex problems and
many long-running HPC applications are more
likely to encounter failures than regular applica-
tions. Both hardware and software failures may
cause the loss of hours or days of computation'.
Therefore, fault tolerance is a quite important issue
in HPC and many data centers provide tools to sup-
port this?>3. The most popular fault tolerance tech-
nique is checkpoint-restart, which periodically saves

the computation state into checkpointing files in sta-
ble storage units. Once a failure happens, the early-
saved computation state will be loaded and the exe-
cution will be resumed from the last checkpoint.

The Graphics Processing Unit (GPU), originally
used for computer graphics, has become a new com-
puting platform for parallel and high performance
computing. The NVIDIA GPU product families
such as Tesla, Fermi and Kepler were designed from
the ground up for parallel computing/programming
and offer exclusive high performance computing
features*. Because of their significant performance,
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many top supercomputers have adopted GPUs for
scientific applications. Fault tolerance is also crit-
ical to these GPU applications, especially in large
scale GPU clusters®. However, there is no mature
checkpoint/restart mechanism in the GPU comput-
ing field.

Checkpoint/restart for traditional CPU computa-
tions can be accomplished at three levels: kernel,
library and application levels where computation
states are acquired or constructed®. However, these
strategies cannot be applied to GPUs since they are
treated as devices and GPU computing states are
not available to users’. Once a kernel is launched
to the GPU, it will remain there until the execution
is finished. Therefore, GPU applications cannot be
stopped and re-scheduled. Also, if GPU jobs crash,
they have to be re-run from the very beginning. Fault
tolerance is not supported so far. Moreover, GPU
job scheduling is implemented in the drivers which
are under control of vendors such as NVIDIA and
AMD. Even operating system vendors cannot solve
the scheduling and fault tolerance issues. Therefore,
without operating system and system call/library
support, we can only adopt application-level check-
point/restart approach for GPUs.

This paper intends to propose a check-
point/restart scheme that consists of a precompiler
and a run-time support module. The precompiler
transforms the user’s source code so that the run-
time support module can be properly invoked to
collect, store and reload the computation state. This
paper makes the following contributions:

o A new infrastructure is developed so that the pre-
compiler transforms both CPU and GPU source
code and inserts library calls for the run-time sup-
port module to construct computation states dy-
namically.

« Data structures and mechanisms are proposed to
collect computation states represented by vari-
ables spread in GPU registers, local memory,
shared memory and global memory. States are
saved in page-locked CPU memory for perfor-
mance, which can be moved to secondary storage
for scalability.

o Experiments have been conducted to determine
the type of page-locked memory for state storage

and overall checkpoint/restart overheads. The re-
sults have demonstrated the effectiveness of the
proposed scheme.

The remainder of this paper is organized as follows:
Section 2 briefly introduces CUDA programing and
GPU memory hierarchy. In Section 3, the proposed
checkpoint/restart scheme is described in detail. In
Section 4, experimental results are provided for fur-
ther system analysis. The related work is given in
Section 5. Finally, the conclusion and future work
are given in Section 6.

2. Background

2.1. CUDA Programming

Although the GPU was initially developed for com-
puter graphics, developers found it to be quite pow-
erful for data parallel applications. Subsequently,
applications started using graphics API such as
OpenGL? and DirectX® to achieve parallel process-
ing indirectly. In 2006, NVIDIA released CUDA
(Compute Unified Device Architecture) as a new
programming paradigm to help utilize NVIDIA
GPUs in a much easier way'®. C/C++ and FOR-
TRAN programmers can write programs in familiar
languages while using the GPU directly. The CUDA
platform includes run-time and driver APIs.

A CUDA program consists of one or more ex-
ecution stages distributed on either the host (CPU)
or the device (GPU). The stages with rich data par-
allelism are implemented in device code, whereas
other stages are implemented in host code. The
NVIDIA C compiler (nvce) separates host and de-
vice code during the compilation process. For C
programs, the host code is further compiled with the
host’s standard C compilers and runs as an ordinary
CPU process. The device code is written in an ANSI
C extension with keywords for labeling data-parallel
functions, called kernels, and their associated data
structures'?. The device code is typically further
compiled by nvcc and executed on a GPU device.

A typical CUDA program contains four steps.
First, data is copied from host memory to GPU
memory which is most likely the global memory.
Second, the CPU code launches a process on the
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GPU by calling a kernel function. Third, the GPU
executes the kernel function in parallel among GPU
cores. Fourth, the computation results are copied
back from GPU global memory to host memory.

2.2. GPU Memory Hierarchy

There are several types of memory available on
the GPU, making GPU checkpoint/restart process-
ing quite complicated. User defined variables can
be spread out in registers, local memory, shared
memory, global memory, constant memory and tex-
ture memory. Most CUDA applications only access
global, local and shared memory. Therefore, texture
and constant memory will not be discussed here.

o Registers: Accessible for read and write, local to
each thread. This is the fastest memory available,
but it is very limited per thread.

o Local memory: Accessible for read and write, pri-
vate to individual threads. It saves the auto vari-
ables that the register spills.

o Shared memory: Accessible for read and write by
all threads in a block. The amount of shared mem-
ory required for a block effects the level of occu-
pancy obtainable.

o Global memory: Accessible for read and write op-
erations by all thread processors in one grid. How-
ever, access to this memory is very slow '!.

2.3. Checkpoint/Restart

Checkpoint/restart is one of the primary techniques
for achieving fault tolerance for long-running scien-
tific applications. Usually, the snapshot of the ap-
plication state is constructed and saved in secondary
storage periodically. Once a failure occurs, the ap-
plication state is reloaded in order to resume the ex-
ecution from the last saved checkpoint. For applica-
tions on the CPU, checkpoint/restart can be accom-
plished at three levels: kernel, library and applica-
tion levels'>.

At the kernel level, the operating system can con-
struct the state!#. This process is usually transparent
to application developers'>. The representative sys-
tems of offering kernel level checkpoints include V-
System!6 and Charlotte!”.

A GPU Checkpoint/Restart Scheme

At the library level, library functions provide
checkpointing and recovery system calls to perform
extraction of computation states. For instance, in the
BLCR (Berkeley Lab Checkpoint/Restart) library,
method cri_syscall() is used to invoke the ioctl(),
which allows BLCR to save register contents onto
the stack for resuming execution!®20,

At the application level, applications checkpoint
themselves and restart from a checkpoint position®!.
Since the source code needs to reconstruct the state,
it might require a complete program rewriting or ex-
tensive modification??%3.

For GPU applications, however, the computation
state is controlled by device drivers and not the OS.
Unfortunately, there is no access to the driver source
code for inserting state preserving code. Thus, the
state cannot be obtained at the kernel level. More-
over, no API is currently provided to extract the state
from CUDA, so the library level approach does not
work either. As a result, application-level check-
point/restart is the only option thus far.

3. GPU Checkpoint/Restart Scheme

Fig. 1. Collecting and Saving Computation State of GPU
Applications

To checkpoint/restart a GPU application, the com-
putation state is the key. Such a state is col-
lected/constructed at a checkpointing event and re-
stored at a later restarting event’®. The state of a
GPU application can be represented by variables de-
clared in the program. However due to the complex
memory hierarchy of the GPU, those variables are
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spread in different memory locations: register, lo-
cal memory, shared memory and global memory as
shown in Fig 1.

Due to the limited space in GPU global memory,
the GPU application state can be saved in the host
system memory first. Variables in registers and lo-
cal memory are copied into one buffer, variables in
shared memory are grouped into another one. These
two buffers are in page-locked host memory. Vari-
ables in global memory are saved back in a user de-
clared buffer. All three buffers can be moved to other
machines for computation migration or filed on hard
disks for long-term fault tolerance purposes.

Source code

@@

Transformed
code

Compilation

Executable File
<: Run-time
Support Module

Fig. 2. Execution Process of the GPU Checkpoint/Restart
Scheme

:>

The checkpoint/restart of a GPU computation is
accomplished through a precompiler at compile time
with a run-time support module as shown in Fig.
2. Without the GPU driver’s source code, collec-
tion/construction must be done at the application
level. The precompiler transforms the application
source code into a format where the run-time sup-
port calls are inserted for constructing the computa-
tion state precisely and efficiently. Developers only
need to determine the checkpoint positions where
the compiler directive “#pragma CPT” should be in-
serted.

The precompiler conducts the following tasks:

o Buffer allocation: create buffers to hold GPU state
in host (CPU) system memory.

o Checkpointing insertion: detect directive
“#pragma CPT” and insert the checkpoint state-
ments accordingly 8.

o Threads synchronization:
threads before checkpointing.

synchronize GPU

« State variable collection: copy variables from
GPU local, shared and global memory to pre-
allocated buffers 3.

o Checkpoint counter management: maintain a
checkpoint counter as a flag to distinguish check-
point and restart at run-time.

« Library calls insertion: glue the run-time support
module and user application together.

« File storage: copy the GPU state to secondary
storage for long-term fault tolerance.

The run-time support module is activated through
primitives inserted by the precompiler at compile
time. It is required to link a run-time library with the
user’s applications in the final compilation. During
the execution, it accomplishes state-related tasks:

« State registration: record the positions and sizes of
data variables in local, shared and global memory
as well as dynamically allocated memory blocks
on the heap.

« State saving: construct and store the computation
state consisting of application-level data segment,
stack and heap.

« State Restoration: reload the state from buffers to
overwrite data variables in different memory loca-
tions for resuming execution.

3.1. Pre-compilation

The pre-compilation work handles source code for
both host (CPU) and device (GPU) sides for check-
pointing and restarting, respectively.

3.1.1. Host-side Code Transformation

The user’s original host program is shown in the up-
per portion of Fig. 3, whereas the pre-compiler mod-
ified program is the lower portion.
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Fig. 3. An Example of Host Side Programs

In Area 1, the header file “bufferTypes.h” in-
cludes the structure bufferType and function proto-
types used by the run-time support module. Struc-
ture bufferType contains the beginning addresses of
all state buffers and tables in page-locked host mem-
ory. This structure will be used by the run-time sup-
port module for state saving and restoration.

In Area 2, flags HCRFlag and DCRFlag are ini-
tialized. These flags are used to indicate if the GPU
state currently saved in the CPU memory needs to
be written to or reloaded from secondary storage and
if the kernel function needs to be launched multiple
times (the GPU state will be saved in or reloaded
from CPU memory).

In Area 3, the external while loop repeats the
host side checkpoint/restart process until the appli-
cation execution finishes. The data structure buffer
is initialized and memory is allocated in page-locked
host memory for state saving. If secondary storage
is used, the computation state from the last check-
point will be loaded into the buffers in page-locked
host memory by calling diskReading(fp, buffer) at

A GPU Checkpoint/Restart Scheme

the beginning of every round if it is not the first time,
which is indicated by HCRFlag.

In Area 4, the internal while loop repeats the
device side checkpoint/restart process until execu-
tion is finished. Function globalMemReg(DCRFlag,
globalPtrl, &buffer, size) saves the beginning ad-
dress pointed to by globalptri, as well as the size of
the GPU global memory block in a linked-list spec-
ified in the buffer. Each global memory block is
recorded one after another using this function call.
If the DCRFlag indicates that the current round is
not the first round, globalMemReg then the state is
also restored from the state buffer, i.e., the content
of the newly allocated global memory block will be
overwritten by the state saved in the previous check-
point.

In Area 5, if the HCRFlag indicates that the cur-
rent round is the first round, the original data will be
copied into GPU global memory.

In Area 6, three new parameters are required for
the launched kernel. Parameter size represents the
number of bytes in a dynamically specified shared
memory block. Parameters DCRFlag and buffer are
used by the runtime support module on the device
side. After the kernel launch, function globalMem-
Saving(&buffer) saves the data from GPU global
memory into the state buffers on the CPU side.

In Area 7, at the end of the inner while loop,
function globalMemDel() is called to de-allocate the
memory block in GPU global memory. In addition,
the flag DCRFlag is set to 1.

In Area 8, diskWriting(fp, &buffer) writes the en-
tire state saved in the buffers (including all variables
in global, shared and local memory, and the regis-
ters) into the checkpointing file on secondary stor-
age. In addition, the HCRFlag is updated to 1 before
the external loop ends.

3.1.2. Device-side Code Transformation

The user’s original device program is shown in the
upper portion of Fig. 4, whereas the pre-compiler
annotated program is shown in the lower portion.
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__elobal_ void vectorAdd (int *globalPir!, int *globalptr2, int*
‘lobalPtr3, int N)
{
int *localPirl;
int “localPtr2= (int*)malloc(sizeof(int));
! 1;

int localVar2;
__shared__ int sharedArr1 [ ThreadNum);
extern__shared__ int bsharedAr2[];

shared Arrl [threadId.x]=globalPtr [ blockDim.x * blockldx.x +
threadldx.xJ;

sharedAm2{threadld.x]=global Ptr2[block Dim. x * blockldx.x +
threadldx.x]:

TocalPrrl=&shared Arrl [thread d.x];

“localPtr2=shared Are2 thread kd.xJ;

Tocal Varl =*localPur 1;

Jocal Var2=*localPt2:

[#pragma CPT Jjuser insert checkpoint

‘lobalPtr3blockDim.x * blockldx.x + threadldx.x]=
local Varl +lacalVar2;
free (localPte2);

i

User Program Before
Pre-compilation

=,

} After pre-compilation

lobalPtrl. int *globalpte2, ingee” "

. bufferType* buffer] 2

localPtrlocalPtr2= (int*ymalloc(sizeof(iny);
localHeapPush(DCRFlag, threadindex localPrrlocalPtr2, §

[Hidetine Tocal variable and poinier structure
| struct localVarType
i
| intlocalVarl
| intlocalVar2;
1) tocal Var;

I struct localPtType
i
{int *localPurl;

| int *localPur2; HE
1) localPur;

sizeof(int),buffer);

sharedArr [ threadld. x}=g lobalPtrl[ blockDim.x * blockldx.x +
threadldx.x];

sharedArr2] threadld. x}=g lobalPtr2[blsckDim. x * blockldx.x +
threadldx.x];

TocalPir.localPtrI=& shared Arr [threadldx.x];

*localPtrlocalPu2=shared A2 threadlds. ;.

Tocal Var.localVar I=*localPtr.localPir1

Tocal Var.local Var2=*localPtr.localPu2;

E pragma position

int threadindex = blockDim.x * blockldx.x + threadldx.x:
int blocklndex = blockldx.x:

__syncthreads();
4/ save local and shared memory
buff

Hishared memory registration
__shared_ int sharedArr [ ThreadNum);
ifithreadldxx==0)

if(threadldx.x==0)
sharedMemSaving(blocklndex,buffer);
break;

globalPtr3{blockDim.x * blockldx.x + threadldx.x)=
localVar.local Var l+local Var.local Var2;

localS

kPush(DCRFlag, blocklndex, threadindes, threaditeent”]
&localVar, sizeof(localVar), &localPrr, sizeof(localPir) buffer); |

localPu2);
localHeapPop(threadIndex.localPtr.localPtr2 buffer):

DCR Flag, blocklndex share Arrl h 1 .
). buffery,
extern__shared__ int bsharedArr2(J;
ifthreadldx.x==0)
DCRFlag, blockIndex,shareAre2,size, buffe);
Hlocal memory handling H break;

default
break;

Hiump control to the right position
swilch(*buffer.CPT[threadIndex])

)

I Eject the activation frame from the stack
localStackPop(threadlndex buffer);
}

case ()

Fig. 4. An Example of Device Side Programs

In Area 1, the user can insert a directive
“#pragma CPT” to instruct the pre-compiler to in-
sert checkpointing statements.

In Area 2, three new parameters are added to
the function parameter lists. Parameter size repre-
sents the size of dynamically allocated block in GPU
shared memory. Parameter DCRFlag determines if
the current kernel launch is a first-time execution or
not. If not, the previous computation state should be
restored first. Parameter bufferType *buffer passes
the address of the buffer structure where the runtime
support module can get clues to save all kinds of
computation states in page-locked memory on the
CPU side.

In Area 3, the pre-compiler collects all local vari-
ables in two newly defined data structures: localVar
contains all non-pointer variables and localPtr is for
pointers. The GPU nvce compiler and driver will
decide to place these variables’ in registers or lo-
cal memory. The reason for gathering pointers in
one data structure is to update them easily when the
computation is resumed.

In Area 4, shared memory is registered. Each
array in shared memory is treated as a memory

block. The function call sharedMemReg(DCRFlag,
blockindex, shareArrl, sizeof(shareArrl), buffer)
registers the memory block into a list by passing the
block index, address and size of the array. However,
it is not necessary for every thread to register since
the shared memory is shared by all blocks. Thread
0 of each block is responsible for the registration of
shared memory. If the DCRFlag indicates that the
current kernel launch is not a first-time execution,
the saved data in the buffer is copied back to over-
write the newly allocated memory block.

Programmers can also dynamically allocate
shared memory schemes by declaring shared
memory variables as extern __shared _ int
bsharedArr2[]. Then the size of the array in the
number of bytes is passed in as the third argument
of the kernel configuration Kernel<<< gridDim,
blockDim, size >>>. In order to register the size of
the dynamically allocated memory block, the size
is also a required parameter in the kernel function’s
parameter list as shown in Area 1.

In Area 5, the content of local memory,
such as the stack and heap for each thread
is handled. Function localStackPush(DCRFlag,
blockIndex, threadlndex, threadldx.x, <&localVar,
sizeof{localVar), &localPtr, sizeof{localPtr), buffer)
is called to communicate with the run-time support
module. Parameters blocklndex, threadlndex and
threadldx.x are passed in to identify the correspond-
ing block and thread. Then the beginning address
and size of the two aforementioned data structures
localVar and localPtr will be recorded as they rep-
resent the stack for this particular thread. There-
fore, each thread’s stack is duplicated in the ap-
plication level. All information can be traced out
through a data structure pointed to by the param-
eter buffer based on which run-time support mod-
ule can reconstruct the computation state dynami-
cally. If DCRFlag indicates that the current ker-
nel launch is not a first-time execution, function lo-
calStackPush also restores/loads the state from the
buffer in page-locked host memory to overwrite the
local stack frame, i.e., the contents of data structures
localVar and localPtr.

In Area 6, a switch statement is inserted to dis-
patch an execution to each labeled point according

Published by Atlantis Press
Copyright: the authors

201



to the value of CPT/[threadlndex]. Pragma counter
CPT determines where execution should begin, in
particular, when to resume a partially executed ker-
nel function. Case 0 is for the first-time execution
of a program. In addition, the CPT value for each
thread needs to be updated after each partial execu-
tion.

In Area 7, users can call malloc() to allocate
memory blocks in the heap (global memory). Each
thread gets one small part of the big block. Usu-
ally, these are addressed by local pointers (by each
thread). The memory block allocated by malloc()
logically belongs to the thread that creates it. So
these memory blocks are treated as if they "were"
in local memory (actually in the heap of global
memory). Each dynamically allocated memory
block is registered to the runtime support module
through the function call localHeapPush(DCRFlag,
threadlndex,localPtr.localPtr2, sizeof{int),buffer) so
that each thread’s heap will be duplicated at the ap-
plication level during the state construction period.

In Area 8, after the checkpointing directive in
the original code, all the threads in the same blocks
are synchronized. Then all memory blocks includ-
ing stack and heap in local and shared memory
are saved into buffers in page-locked host memory.
Only thread 0 in each block is necessary to save the
memory blocks in shared memory for that particular
thread block.

In Area 9, before the kernel returns, function
localStackPop(threadlndex,buffer) pops the current
activation frame from its stack to finish the execu-
tion.

3.1.3. Header file bufferType.h

Header file bufferType.h includes a structure type
bufferType and the prototype of the functions in run-
time support module as shown in Fig. 5.

A GPU Checkpoint/Restart Scheme

Fig. 5. The content of the file bufferTypes.h

Structure type bufferType includes the beginning
addresses of the buffers, the sizes of the buffers, the
pointers to record the positions in the buffers, the
beginning addresses for the tables, the heads of the
data structure, the thread number per block and the
block number per grid.

Buffers include globalMemBuf, sharedMemBuf,
localStackBuf and localHeapBuf, whereas size-
OfGMF, sizeOfSMF, sizeOfLSB and sizeOfLHB are
used to record their sizes, respectively. SharedMem-
Buf, localStackBuf and localHeapBuf are phys-
ically one-dimensional buffers but logically two-
dimensional ones. By dividing the blockNum from
sizeOfGMF, we can get the offset of the row for each
block in the SharedMemBuf. By dividing the (block-
Num*threadNum) from sizeOfLSB and sizeOfLHB,
we can get the offset of the row for each thread in
the localStackBuf and localHeapBuf.

After the state is saved into the buffer, it is nec-
essary to record the current position in the buffer so
that the state for the next memory block will not
rewrite the current memory blocks’ states. Pointer
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globalBufPtr records the current position in glob-
alMemBuf. However, since sharedMemBuf, local-
StackBuf and localHeapBuf are two-dimensional
buffers, sharedBufPtr, localStackPtr and local-
HeapPtr are pointer type arrays where each element
in the array corresponds to each block or thread.

Tables include globalMemBlock, sharedMem-
Block and localMemBlock. They are used to keep
track of the new address, old address and size of
each memory block. Table globalMemBlock main-
tains the information of global memory blocks. It
can be treated as a two-dimensional long data type
array, and all the addresses will be transferred into
long integers and inserted into the table. However,
there are multiple tables for shared memory blocks
and local memory blocks since each block and
thread maintain its own table. Therefore, shared-
MemBlock and localMemBlock are arrays of the
pointers pointing to each table.

Data structures include globalMemList, Shared-
MemlList, localMemStack and localMemHeap.
Global memory only needs a single linked-list
to record the memory blocks and globalMemlList
is the head of the list. However, every block
in shared memory maintains its own list and ev-
ery thread maintains its own stack and heap.
Therefore, SharedMemlList, localMemStack and lo-
calMemHeap are arrays of pointers pointing to the
head of the list of each block, stack and heap of each
thread.

Variable threadNum represents the number of
thread per block and blockNum represents the num-
ber of block per grid.

The functions with corresponding prototypes are
responsible to allocate the buffers, register, save and
restore the state, and store the state into files. These
are used in the run-time support module.

3.2. Run-time Support Module

The run-time support module is activated through
the library calls inserted by the pre-compiler into
the user code. Mainly, this module is responsible to
register, save and restore the computation state. In
addition, other support functions provide for buffer
allocation, file management, and data structure dele-
tion.

3.2.1. Buffer Allocation

Function bufferallocation(bufferType *buffer) allo-
cates the memory for buffers and arrays. Buffer
globalMemBuf is allocated within normal CPU
memory with sizeOfGMB. Buffer SharedMem-
Buf, localStackBuf and localHeapBuf are allocated
within page-locked host memory.

CUDA provides library calls to allocate and
free page-locked (also known as pinned) host mem-
ory blocks through cudaHostAlloc() and cudaFree-
Host(). Such memory blocks are opposed to regular
pageable memory blocks allocated and de-allocated
by system calls malloc() and free(). The advantages
of page-locked host memory include:

« Copies between page-locked host memory and de-
vice memory can be performed concurrently with

kernel execution for some devices 2°.

« On some devices, page-locked host memory can
be mapped into the address space of the device,
eliminating the need to copy data back and forth
between host and device memory.

« For systems with a front-side bus, bandwidth be-
tween the host memory and device memory is
higher if the host memory is allocated as page-
locked.

Variable globalBufPtr is a pointer in CPU mem-
ory and globalMemList is will be allocated dynami-
cally later in the registration step. However, shared-
BufPtr, localStackPtr, localHeapPtr, globalMem-
Block, sharedMemBlock, localMemBlock, Shared-
MemlList, localMemStack and localMemHeap are
all allocated on page-locked host memory so that
they can be accessed by the device side. Among
them, table globalMemBlock is allocated with size
of (the memory block number * 3 * sizeof(long)).
Pointer arrays sharedBufPtr, sharedMemBlock and
SharedMemlList are allocated with the size of (block-
Num * sizeof(void*)) while localStackPtr, local-
HeapPtr, localMemBlock, localMemStack and lo-
calMemHeap are allocated with the size of (thread-
Num * sizeof(void*)).
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3.2.2. State Registration

In order to keep track of the memory blocks in
global, shared and local memory, these memory
blocks are registered into special data structures: a
linked list for global memory, a list for shared mem-
ory per block, a stack and a heap for local mem-
ory per thread. The beginning address and size of
each memory block are registered into a single node
and added to the data structure through the regis-
tration function calls inserted by the pre-compiler.
These two data structures simulate real memory 1/O
on the GPU. In addition, the addresses and sizes of
the memory blocks are recorded in tables for further
pointer updates.

Global Memory Registration

Fig. 6. Process Layout of Global Memory Registration

Function globalMemReg(int DCRFlag,void* glob-
alPtrbufferType *buffer, int size) accomplishes
global memory block registration in two steps as
shown in Fig. 6. The global memory block’s begin-
ning address and size are passed by parameter glob-
alPtr and size. Parameter bufferType *buffer con-
tains the address of the head of globalMemList and
globalMemBlock. Parameter DCRFlag will be used
to indicate restoration.

o In step 1, as the example shown in Fig. 6, a new
node is added to the tail of the globalMemlList to
record the address and size of the memory block
allocated at globalPtr3. Because the global mem-
ory blocks are allocated by the program executed

A GPU Checkpoint/Restart Scheme

on the host side, in order to save the space for
global memory and page-locked host memory, the
list globalMemList is in CPU memory. Pointer
buffer->globalMemlList is assigned to point to the
head of this list.

e In step 2, the information about the memory
block is also maintained in table globalMem-
Block, which keeps track of the old and new ad-
dresses as well as the sizes of the memory blocks.
When the function globalMemReg() is called, the
address of the memory block globalptr3 is written
into the first column. The size is inserted into the
third column. Since the run-time support module
will search the table during restoration, it is main-
tained in the page-locked host memory for both
sides’ access.

Shared Memory Registration

Fig. 7. Process Layout of Shared Memory Registration

Function sharedMemReg(int DCRFlag,int
blockIndex,void* shareArrint size, bufferType
*buffer) helps register memory blocks in shared
memory in two steps as shown in the example in
Fig. 7. The beginning address of an array and its
size are passed by parameters sharedArr and size.
The block ID is specified by blockindex to distin-
guish each thread block.

« In step 1, a new node is added to the tail of the
list sharedMemList to record the address and size
of array sharedArr2. Because the shared memory
is very critical for dynamically allocated memory
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and all threads in the block share the same mem-
ory, the list is maintained in the local memory of
thread O in each block.

« In step 2, the information about the memory block
is also recorded in table sharedMemBlock, which
performs the same functionality as globalMem-
Block. The only difference is that each thread
block has its own table in the local memory of
thread O in each block.

In the main data structure buffer, two fields, buffer-
>sharedMemList and buffer->sharedMemBlock, are
allocated on page-locked host memory as two
pointer type arrays. Each element points to the be-
ginning address of the sharedMemList and shared-
MemBlock for each block by matching the array in-
dex with the block index. The sharedMemList and
sharedMemBlock are allocated in local memory log-
ically but allocated on the heap of global memory
physically.

Local Memory Registration

Fig. 8. Process Layout of Local Memory Registration

Local memory registration includes two operations:
localStackPush and localHeapPush. Function local-
StackPush(int DCRFlag,int blockIndex,int threadln-
dex,int threadldx.x, void* localVar, int sizeOfVar,
void* localPtr, int sizeOfPtr, bufferType *buffer)
pushes the static local memory blocks onto the
stacks as shown in Fig. 8. All the variables
and pointers are collected and gathered into struc-
tures localVar and localPtr at pre-compilation time.
The addresses of these two structures and sizes are

passed by the parameter list. Function localHeap-
Push(int DCRFlag, int threadlndex,void* ptr, int
size, bufferType *buffer) pushes the dynamically al-
located memory blocks in local memory onto the
heaps. The beginning address and size of the mem-
ory block are passed by ptr and size. Moreover,
thread index is necessary for both functions because
each thread is registered separately. Both functions
take two steps to complete the registration:

o Instep 1, localStackPush gathers the addresses for
structure localVar, localPtr and their sizes in a
node then pushes them onto the stack, whereas lo-
calHeapPush pushes the address and size of the
dynamic memory block pointed by the pointer
field such as localPtr.localPtr2 onto the heap.
Each thread maintains its own stack and heap in
its local memory.

« In step 2, the addresses and sizes for all the static
and dynamic memory blocks are recorded into the
same table localMemBlock. Each thread main-
tains its own table. All other details of the table
are the same as table globalMemBlock.

In the common data structure buffer, three fields:
buffer->localMemStack,  buffer->localMemHeap
and buffer->localMemBlock are allocated in page-
locked host memory as three pointer type arrays.
Each element points to the beginning address of
the localMemStack, localMemHeap and localMem-
Block for each thread, respectively, by matching the
array index with thread index. The localMemStack,
localMemHeap and localMemBlock for each thread
are allocated in local memory logically but on the
heap of global memory physically.

3.2.3. State Saving

Memory blocks in global memory will no longer be
available once they are de-allocated. In addition, the
memory blocks in local and shared memory are not
accessible to the outside world after the kernel ex-
its. In order to keep such state data in these memory
blocks, the run-time support module helps save them
into host memory.
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Global Memory Saving

Fig. 9. Process Layout of Global Memory Saving

Function globalMemSaving(bufferType*  buffer)
saves the state in each memory block in global mem-
ory into buffer globalMemBuf in CPU memory as
shown in Fig. 9. The beginning address of the buffer
and the head of the list are contained in bufferType
*buffer.

The run-time support module traverses the whole
list, saves the address and size in the node to the
buffer first, and then uses cudaMemcpy() API to
copy the data inside the memory block into the
buffer. CUDA provides this API to make the global
memory accessible from the host, and the flag cu-
daMemcpyDeviceToHost allows memory copy from
global memory to CPU memory.

Shared Memory Saving

Fig. 10. Process Layout of Shared Memory Saving

Function sharedMemSaving(int blocklndex, buffer-
Type* buffer) saves the state in each memory block
in shared memory into a two dimensional buffer
sharedMemBuf as shown in Fig. 10. The buffer is
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allocated in page-locked host memory so that both
the CPU side and the GPU side can access it. Each
row of the buffer is dedicated to back up the state of
one thread block. Parameter blockIndex helps distin-
guish each block and bufferType* buffer contains the
beginning address of sharedMemBuf and the heads
of the lists.

Thread O in each block is responsible of saving
the shared memory state for the whole block. It
traverses the sharedMemlList in local memory: first
saves the address and the size of the memory block
into corresponding row in the buffer, and then copies
the data inside the memory block into the buffer
through memcpy().

Local Memory Saving

Fig. 11. Process Layout of Local Memory Saving

Function localMemSaving(int threadlndex,bufferType*
buffer) saves the state in each thread in local mem-
ory into two two-dimensional buffers localStackBuf
and localHeapBuf as shown in Fig. 11. Each row of
the buffers is dedicated to back up the local mem-
ory state of a thread. In addition, both buffers are
allocated in page-locked host memory for accessi-
bility from both the CPU and the GPU sides. Pa-
rameter threadlndex corresponds to thread ID and
bufferType* buffer contains the beginning address
of buffer localStackBuf and localHeapBuf, as well
as the heads for the stacks and heaps. The saving
process includes stack saving and heap saving.

Each thread traverses the stack and saves every
node into the corresponding buffer location. Be-
cause there are two pairs of address and size in each
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node, they are saved in order. First, the address and
size for localVar are assigned to buffer localStack-
Buf. Second, the data of localVar is copied through
memcpy(). Third, the address and size of localPtr
are saved to the buffer. Fourth, the data of localPtr
is copied over. This indicates that each node in the
stack needs six slots on the buffer for saving.

The heap is traversed by each thread: the address
and size are saved first and then the data in the mem-
ory block is copied over by memcpy().

3.2.4. State Restoration

During state restoration, states stored in the buffer
are copied back to different GPU memory units.

Global Memory Restoration

Fig. 12. Process Layout of Global Memory Restoration

Global memory restoration is triggered by func-
tion globalMemReg(int DCRFlag,void* glob-
alPtrbufferType *buffer, int size). If DCRFlag is
detected to be 0, the restoration process will be
skipped. Otherwise, the state will be restored.
Global memory restoration takes three steps. Us-
ing the example shown in Fig. 12:

« In step 1, the address of globalPtrl in globlMem-
Buf represents the old address of the memory
block during the last checkpointing. The address
is recorded in the old address column in table
globalMemBlock.

« In step 2, the data of old globalPtr1 memory block
is copied back to the newly allocated memory

block using function CudaMemcpy() with flag cu-
daMemcpyHostToDevice. The beginning address
of the new memory block can be accessed from
the parameter void* globalPtr in function glob-
alMemReg().

« In step 3, the pointer globalBufPtr in the buffer
is assigned to point to the beginning position of
the next memory block so that the next mem-
ory block can be restored when globalMemReg is
called again. The reason an extra pointer is re-
quired here is that the user cannot move the origi-
nal pointer for globalMemBuf. The saving process
of the next checkpoint will reuse the same buffer
from the beginning.

Shared Memory Restoration

Fig. 13. Process Layout of Shared Memory Restoration

Shared memory restoration is invoked by shared-
MemReg (int DCRFlag, int blockIndex, void* share-
Arry, int size, void* buffer) if DCRLag is detected
to be 1. Thread O of each block is responsible for
restoring the state from the buffer to the memory
block in shared memory. The whole restoration pro-
cess is also accomplished in 3 steps as shown in Fig.
13:

e In step 1, the address of sharedArrl is read
from buffer sharedMemBuf, and added into ta-
ble sharedMemBlock as the old address of
sharedArrl. SharedArrl of each row corresponds
to the old sharedArrl of each thread block.

« In step 2, the data in the buffer is copied into
the new memory block (with the same size) us-
ing memcpy(). The beginning address of the new
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memory block is passed by parameter sharedArr
in the function sharedMemReg().

o In step 3, sharedBufPtr is an array of pointers.
Each element records the current location of each
row in the buffer after one memory block is recov-
ered so that the next memory block’s restoration
can start from the current position.

Local Memory Restoration

Fig. 14. Process Layout of Local Memory Restoration

Local memory restoration is achieved using lo-
calStackPush(int DCRFlag, int blockindex, int
threadlndex, int threadld, void* localVar, int sizeOf-
Var, void* localPtr, int sizeOfPtr, bufferType* buffer)
when DCRFlag is detected to be 1. The states in lo-
calStackBuf and localHeapBuf are written back to
the local memory by each thread. The local memory
restoration process includes stack and heap restora-
tion as shown in Fig. 14.

Heap restoration is completed in a loop contain-
ing four steps:

o In step 1, the address of localPtr.localptr2 in lo-
calHeapBuf is written into the old address column
in the table localMemBlock.

« In step 2, a same size memory block in local mem-
ory is reallocated using function malloc() and the
address of the new memory block is recorded into
the corresponding new address column in table /o-
calMemBlock.

o In step 3, the data in the old memory block is
copied into the corresponding new memory block.

e In step 4, localHeapPtr is an array of pointers.
Each pointer keeps track of the current position of
the row of buffer localHeapBuf.

A GPU Checkpoint/Restart Scheme

« Go to step 1 if the buffer has not been entirely re-
stored.

Stack Restoration contains four steps:

o In step 1, the beginning address of localVar is
written into the old address column in table lo-
calMemBlock.

o In step 2, the data of the old memory block is
copied into the new memory block whose begin-
ning address is passed by parameter localVar in
function localStackPush().

« In step 3, the pointer structure is restored. This
step has to wait until all other memory blocks have
been restored and all memory block tables are up-
dated. This is because the pointers in the pointer
structure are required to point to the new memory
blocks that contain the data of the corresponding
old memory blocks. It takes four sub-steps to fin-
ish:

e The address of localPtr is written into the old
address column in table localMemBlock.

o For each pointer from the localPtr structure,
compare the pointer with old beginning ad-
dresses in the table globalMemBlock, shared-
MemBlock and localMemBlock to determine
which memory block it is located in.

 Get the offset by subtracting the beginning ad-
dress of the old memory block from the pointer.

« Update the pointer’s new pointing address by
adding the offset to the corresponding new be-
ginning address of the block, i.e., (original
pointer address - old memory block address) +
new memory block address.

o In step 4, localStackPtr is an array of pointers.
Each pointer keeps track of the current position
of the row in buffer localStackBuf.

3.2.5. File Management

Function diskWriting(FILE *fp, bufferType *buffer)
writes all buffers into a checkpointing file. First, the
size of bufferType is written into the file. Second,
the buffer itself is written into the file. Third, global
memory, shared memory, local stack, and local heap
buffers are written into the file sequentially.
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Function diskReading(FILE *fp, bufferType
*buffer) reads the states from the checkpointing file
and copies them into buffers. First, the size of buffer-
Type is read so that the buffer data structure itself
can be read. Second, according to the sizeOfGMB
in old buffer, the state for global memory is copied
into the new allocated buffer passed by parameter
buffer. Shared memory and local memory buffers
are copied back one after another using the same
strategy.

3.2.6. Data Structure Deletion

Function globalMemDel() deletes the linked list
globalMemList in CPU memory, whereas func-
tion localHeapPop(int threadlndex, void* ptr,
BufferType* buffer) removes the tail of heap lo-
calMemHeap in each thread’s local memory to re-
turn the resources back to the system.

4. Experimental Results

All GPU checkpoint/restart experiments are con-
ducted based on NVIDIA Fermi GPU, Tesla C2050.
The vector addition application was selected as the
test program. The array sizes used were 256, 512,
1024, 2048, 4096, 8192, 16384 and 32768. The state
buffers were allocated in page-locked host memory
on the CPU side in four modes: default, portable,
write-combining and mapped memory.

vector size 512 2048 m8192 mW32768

45

40 8.146976
36.331806

37.41008
35.596416

Time(Second)

0+ — - —

Default Portable Memory  Write-Combining

Memory

Mapped Memory

Memory type

Fig. 15. GPU Checkpointing Overhead

Checkpointing overhead for the vector addition
application is shown in Fig. 15. The gap in check-
pointing overheads for the four modes grows as the
array size increases. Write-combining memory ex-
hibits the best performance. This is because write-
combining memory frees up the host’s L1 and L2
cache resources, making more cache available to the
rest of the application. In addition, write-combining
memory does not require snooping the PCI Express
bus for data transfers. Compared with default page-
locked host memory, write-combining increased the
performance of vector addition by 2% for check-
pointing on average.

vector size

m512 2048 w8192 m32768

35.535809 35.493729 35.513985 35.268929

Time(Second)

0 — T——

Default

Portable Memory Write-Combining

Memory

Mapped Memory

Memory type

Fig. 16. GPU State Restoration Time

The overheads in restart phase is shown in Fig.
16. Mapped memory exhibits the best performance.
Accessing host memory from a kernel directly has
several advantages. First, there is no need to allocate
a block in device memory, and then copy data back
and forth between host and device memory. Second,
data transfers are implicitly performed as needed by
the kernel. Third, the kernel-originated data trans-
fers automatically overlap with kernel execution for
performance gains. Compared with default page-
locked host memory, mapped memory increased the
restart performance by 1.3% on average.
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Fig. 17. Checkpoint/Restart Overhead with the Best Mode
Combination

Fig. 17 shows the overall performance of the
best page-locked memory configuration for different
array sizes. Write-combining and mapped memory
modes are used for checkpoint and restart, respec-
tively. Obviously, the application-level GPU check-
point/restart might introduce high overheads for ap-
plications with big data sets. However, it is still a
feasible mechanism to provide fault tolerance fea-
tures for long-running scientific applications.

5. Related Work

State-Carrying Code (SCC) is a software mecha-
nism to achieve computation mobility by saving
and retrieving computation states during normal pro-
gram execution in heterogeneous multi-core/many-
core clusters?’. SCC adopts the application-level
thread migration approach. However, SCC was only
applied to applications running on the CPU and does
not address CUDA programming at all.

Condor®!' has been developed by the University
of Wisconsin-Madsion, and is a heterogeneous dis-
tribution system that uses idle resources to achieve
high throughput in the work pool. Users only need
to re-link with the library provided by Condor to
use the Condor checkpointing and process migra-
tion feature. There is no need to modify the un-
derlying Linux operating system®2. However, Con-
dor checkpointing technology only supports single-
process tasks.

Libckpt®® inserts a middle layer to initialize the
checkpointing process and collect the state informa-
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tion at run-time in order to achieve checkpointing at
the user level. When the state needs to be saved,
the process’ address space information and other in-
formation collected by the middle layer are stored
to reliable storage. When a state is restored, a new
process is started using the original binary file of the
application.

One simple GPU checkpoint/restart scheme is
proposed by Calhoun et al. '8 The purpose is to
support preemptive kernel function for flexible GPU
scheduling. However, the existing scheme works
only with simple CUDA programs and cannot man-
age a complex GPU memory hierarchy.

CheCUDA is a tool to store the image of host
memory into a file 2. As an additional package of
Berkeley Lab Checkpoint/Restart (BLCR) !°, it can
handle CUDA applications. However, CheCUDA
did not perform well in task migration. When BLCR
fails to restart the process, CheCUDA is not able to
migrate the task. In order to reduce the overhead
of CheCUDA, Supada Laosookasathit proposed a
lightweight checkpoint/restart using CUDA streams
based on Virtual Cluster Checkpointing Protocol
(VCCP) #. However, neither of these two check-
point/restart schemes have dealt with complex GPU
computation states directly.

6. Conclusions and Future Work

Checkpoint/restart is an effective scheme for fault
tolerance and has been widely used to reduce the
overall execution time of long-running applications
when failures occur 2. This paper proposes a new
checkpoint/restart scheme for GPU applications.
The pre-compiler transforms the user’s original pro-
gram, inserts directives for checkpoint/restart posi-
tions, and defines data structures to enable the run-
time support system to collect computation states
precisely and dynamically. For scalability, compu-
tation states are saved in page-locked host memory
as well as on the secondary storage. Experimental
results have demonstrated the effectiveness of the
proposed scheme which can also be used for GPU
computation migration between multiple GPU ma-
chines.

The future work includes reducing overheads
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further and testing the scheme with more large-scale
and complex applications.
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