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Abstract
Solutions of the system of dynamical equations of state and equations of the balan-
ce of mass and momentum are studied. The system possesses families of periodic,
quasiperiodic and soliton-like invariant solutions. Self-similar solutions of this gene-
ralized hydrodynamic system are studied. Various complicated regimes, arising as
a result with terms desribing relaxing and dissipative properties of the medium are
described.

1 Introduction

The problem of constructing the condensed media model adequately describing an influ-
ence of their internal structure, manifested in high-rate processes (combustion and det-
onation waves propagation, earthquakes, etc.), actually is far from being solved. The
difficulties arising when one constructs the equation of state are associated with lack of
knowledge on the mechanism controlling the process of relaxation and also on the class
and form of functions approximating correctly the experimental results. In this situation
the deviation of the system from the state of thermodynamical equilibrium is expedient to
describe as chemical reactions and to regard the corresponding degrees of reaction com-
pleteness as internal variables [1]. Generally speaking, this approach does not give any
advantage, for the reactions mechanism usually remains unknown, yet it becomes helpful
when the process under consideration is not far from equilibrium. To obtain the govern-
ing (constituent) equation in this case, phenomenological nonequilibrium thermodynamics
methods may be employed [1,2], enabling to express coefficients of the governing equations
as functions of measurable physical parameters, regardless of the detailed mechanism of
relaxing process.

Following this way, the dynamical equation of state has been obtained [1], aimed at
describing high-rate, high-intensive processes in multicomponent relaxing media. Together
with the balance of mass and momentum equations, taken in the hydrodynamical approx-
imation, it forms a closed system of the following form:

ρ
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+
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where ui are mass velocity components, ρ is density, p is pressure, d/dt = ∂/∂t+ui∂/∂xi,=
is mass force τ, χ, κ,A and E are parameters, which completely describe medium behavior
in the long-wave approximation [1].

In the following sections we shall investigate the features of invariant solutions of
system (1) which, in contrast to classical hydrodynamical systems, posesses families of
periodic, quasiperiodic and soliton-like invariant solutions.

2 On the periodic self-similar solutions of the system
of balance equations closed by the first-order
governing equation

By straightforward calculation one can determine that system (1) is invariant under the
Galilei group G(n). It admits an extra one-parameter group generated by the operator
M = ρ∂/∂ρ + p∂/∂p. if = = ργ and n = 1. So in the case of one spatial variable, the
ansatz

u = D + U(ω), ρ = exp[ξt + S(ω)], p = ρZ(ω), ω = x−Dt, (2)

connected in the standard way with a symmetry group generated by the operator < =
∂/∂t+D∂/∂x+ ξM , enables to go from the initial PDE system to a subsequent system of
ODE. It is obvious that expression (2) describes a travelling wave moving with the constant
velocity D. The parameter ξ appears to be connected with the spatial inhomogeneity ahead
of the wave front.

Till the end of this section we shall assume that A = E = 0. Using the ansatz (2) we
obtain an ODE system that does not contain S variable in explicit form. Functions U and
Z satisfy the equations

U∆
dU

dω
= U (τγU + σZ − κ) = Uφ, (3)

U∆
dZ

dω
=
(
Z − U2

)
φ + (γU + Zξ) ∆,

where ∆ = τU2 − χ, σ = 1 + ξτ. It is not difficult to see that the only critical point of
system (3) belonging to the physical parameter range (i.e. laying in the half-plane Z > 0
beyond the manifold U∆ = 0) is the point A having the coordinates U0 = −κξ/γ, Z0 = κ.
Our goal is to state the conditions that guarantee the existence of periodic solutions in
the vicinity of the critical point A.

Putting aside for a while the analysis of the ODE system, let us formulate a boundary-
value problem for the initial system of PDE. So, we look for the conditions leading to the
existence of the self-similar solutions describing shock wave propagation The initial-value
problem happens to be self-similar provided that both states of the medium ahead and
behind the shock front are expressed by the formula (2). Assuming the state ahead of the
front to be independent of time, we obtain:

ρ1 = ρ0 exp(ξx/D), p1 = Z0ρ1. (4)

These functions will satisfy the initial system if Z0 = κ and γ = κξ/D. We immediately
conclude from the last expression that U0 = −D, hence the critical point A represents the
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spatially inhomogeneous state ahead of the wave front. Note that the slope of inhomo-
geneity is defined by the parameter ξ provided that D is fixed.

Let us rewrite system (3) in variables x = U − U0, y = Z − κ :

U∆
d

dω

(
x

y

)
=

[
−κξτ, −σD

(∆0 + τθ)γ, ξ∆0 + σθ

](
x

y

)
+
(

x(τγx + σy)
y[τγx + σy − x(x + 2U0)]

)
. (5)

Here ∆0 = τD2 − χ,Θ = κ−D2. In order to apply the Hopf theorem, we have to require
that the linearization matrix of system (5) posesses a pair of pure imaginary eigenvalues.
This is so provided that κ = D2 + ξχ and, under the assumption that ξ < 0, the following
inequalities hold:

κ < D2 < χ/τ. (6)

To study the limit cycle creation conditions as well as its stability properties it is
convenient to go to the canonical Poincaré representation [3,4]. Omitting this standard
procedure, let us formulate the result obtained.
Theorem 1. Let ξ < 0 and inequalities (6) hold. Then there exists an open interval
J ⊂ R1 in the vicinity of the critical value Dcr =

√
κ− ξχ such that the system (5)

posesses a family of stable periodic solutions whenever D ∈ J.
The results of qualitative investigation of the self-similar solution of system (1) with

the first-order governing equation have been supported by the direct numerical simulation.
A piston problem with the inhomogeneous boundary conditions given by the formula (4)
was solved using the Godunov numerical scheme [3].

The piston velocity Vp was varied near the critical value Vcr =
√

κ− ξχ, while the rest
of parameters were chosen in accordance with the statements of Theorem 1. The effect of
structures’ formation behind the front of the shock wave created by the piston movement
has been observed for Vp ∈ (V1, V2), where V1 < Vcr < V2, while for Vp < V1 and Vp > V2

the patterns formation did not take place.
The results of the numerical experiments enable one to expect the self-similar periodic

solutions, predicted by Theorem 1, to be asymptotically stable, though, to back this
hypothesis, extra investigations are needed.

3 Complicated self-similar solutions arising in the case
of a second-order governing equation

Now, let us consider system (1) with A 6= 0 and E 6= 0. The symmetry of this system will
not be changed if we assume that κ = B(p/ρ). Inserting ansatz (2) into (1), we obtain an
ODE system in this case, cyclic with respect to S. Variables U,Z and W = dU/dω may
be shown to satisfy the following system:

U ′ = UW,

Z ′ = γU + ξZ + W (Z − U2) ≡ Φ, (7)

W ′ = (A− EU2)−1[MΦ + G(Z) + W (χ−MZ)]−W 2

where M = τ − Eξ, G(Z) = Z −B(Z), (·)′ = Ud(·)/dω.
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One easily verifies that a point of phase space having the coordinates U = −ξZ0/γ,
Z = Z0 > 0,W = 0 will be a critical point belonging to the physical parameter range if
the function G has the following expansion:

G(Z) = g1(Z − Z0) + g2(Z − Z0)2 + g3(Z − Z0)3.

Assuming that such a decomposition does take place, let us rewrite system (7) in the
coordinates x = U − U0 ≡ U + ξZ0/γ, y = Z − Z0 : X

Y
W


′

=

 0, 0, U0

γ, ξ, ∆
Lγ, Lξ + G1, σ


 X

Y
W

+

 H1

H2

H3

 , (8)

where L = M/K,Gi = gi/K, K = A− EU2
0 , σ = (χ−MU2

0 )/K, ∆ = κ− U2
0 ,

H1 = UW, H2 = W [Y −X(2U0 + X)],

H3 = G2Y
2 − (2U0LX + W )W + 2U0EX[LγX + LξY + σW + G2Y

2−

2U0LWX]/K + G3Y
3 − LWX2 + E(1 + 4U2

0 E/K)×

X2(LγX + LξY + σW )/K + O(|X, Y,W |3).

We are going to state the conditions that guarantee the existence of periodic and quasiperi-
odic solutions of system (8). This may be done by the analytical means provided that
its linearization matrix has one zero and two pure imaginary eigenvalues. The above
requirement will be fulfilled if the following relations hold:

χ = MU2
0 − ξK > 0, g1 = 0, (9)

Ω2 = ξχ/K > 0. (10)

In order that the condition (10) be satisfied, we shall assume that ξ < 0 and K < 0.
A general analysis of the (0,±iΩ) bifurcation was given by Guckenheimer and Holmes

[4]. To take advantage of their results, we should go to the coordinate system in which
the linearization matrix M̂ becomes quasidiagonal and next find the normal form of the
system obtained by a local asymptotic transformation followed by the averaging procedure.
The linearization matrix will be quasidiagonal in the coordinate system defined by the
expression x1

x2

x3

 =
1

U0Ω2

 −ξγ, −ξ2, ξU2
0

−γΩ, −ξΩ, 0
U0(Ω2 + γLU0), LξU2

0 , −ξU2
0


 X

Y
W

 . (11)

In new variables the system (8) is as follows:

x′1 = −Ωx2 +
∑
i≤j

Aijxixj +
∑

i≤j≤k

Aijkxixjxk + · · ·

x′2 = Ωx1 +
∑
i≤j

Bijxixj +
∑

i≤j≤k

Bijkxixjxk + · · · (12)
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x′3 =
∑
i≤j

Cijxixj +
∑

i≤j≤k

Cijkxixjxk + · · ·

We do not write down the coefficients Aij , Bij , Cij in explicit form for they are very
cumbersome.

Next we employ the local asymptotic transformation

xi = yi +
∑
j≤k

P i
jky

iyk (13)

choosing the coefficients P i
jk in such a way that variables yi up to O(|y|2) satisfy the

following system:

y′1 = −Ωy2 + y3(M1y1 + S1y2) + O(|y|2),

y′2 = Ωy2 + y3(S2y1 + M2y2) + O(|y|2), (14)

y′3 = N1(y2
1 + y2

2) + N2y
2
3.

It occurs that parameters M2, S2 can be chosen arbitrarily, while the remaining ones are
as follows:

M1 = A13 + B23 −M2, S1 = −B13 + A23 + S2,

N1 = (C11 + C22)/2, N2 = C33. (15)

(for details see [3], Appendix 2).
Going to the coordinates r̄ =

√
y2
1 + y2

2, Θ = arc sin (y2/
√

y2
1 + y2

2), and averaging over the
”fast” variable Θ, we obtain after the rescaling r = −

√
|N1N2|r̄, z = −N2y3 a canonical

system

r′ = arz, z′ = br2 − z2, (16)

where

a = −(A13 + B23)/(2C33), b = −sgn[C33(C11 + C22)]. (17)

It is evident that the canonical system is even more degenerate than the basic one
(8) for it does not contain any linear term. In order to ”unfold” this degeneracy, a two-
parameter set of small perturbations should be introduced:

r′ = µ1r + arz z′ = µ2 + br2 − z2 (18)

The possible regimes arising after the unfolding occur to depend on signs of the coefficients
a and b. We shall consider the case a > 0, b = −1 in more detail. It is easy to see that the
system (18) posesses a critical point B in the half-plane r < 0 provided that µ2 > (µ1/a)2.
This point corresponds to a periodic solution of system (8) since the canonical system (18)
has been obtained via the averaging over the angular variable.

The critical point B is a stable focus when µ1 < 0 and is an unstable focus otherwise.
When µ1 = 0 and µ2 > 0 it becomes a center, which evidently disappears when µ1 6= 0,
giving rise to another regimes which are structurally stable.
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In fact, the case 0 < |µ1| << µ2 << 1 requires a rather delicate treatment. E.g., when
µ1 6= 0 a limit cycle creation may be shown to take place. Using the arguments that have
been attached earlier, one easily gets convinced of that this corresponds to the creation of
a quasiperiodic solution of the initial system. In addition to the abovementioned regimes
there exists a set of homoclinic loops when a = 2 and b = −1 .

The stability of these solutions depends in essential way on the coefficients standing at
third-order monomials, which, for the sake of simplicity, have been consequently omitted
starting from the equation (14). As was shown in [4], the canonical form may be presented
up to O(|r, z|3) as{

r′ = µ1r + arz,

z′ = µ2 + br2 − z2 + fz3
(19)

with a and b still defined by the formula (17). When a > 0, b = −1 and f < 0 the
initial system occurs to possess stable periodic and quasiperiodic solutions, and when, in
addition, a = 2, a stable homoclinic loop does exist [4] in the vicinity of the manifold
µ2 = −4fµ1/3.

Employing the equations (11), (15) and (17) one is able to express a and b as functions
of the initial system’s parameters:

a = 1− [Ω2(Ω2 + ξ2) + (ΩξU)2E/K]/[(γU0)2G2], (20)

b = sgn[G2(2Ω2(ξ2 + Ω2)(1 + EU2
0 /K)−G2((Ω∆)2 + (γU0)2))] (21)

When a = 2 the index G2 is as follows:

G2 = −[Ω2(Ω2 + ξ2) + (ΩξU)2E/K]/(γU0)2. (22)

The condition b < 0 will have the simplest form if we go to the coordinates x = A|ξ|/τ
and y = E|ξ|/τ :

2κ2y(x−D2/2) < (x−D2/2)(∆2 − 3κ2) + 3D2(∆2 − κ2)/2. (23)

The solution of the inequality (23), essentially depending on signs of ∆2−3κ2 and ∆2−κ2,
may be easily handled.

In order to state the stability of periodic and quasiperiodic regimes created after the
unfolding degeneracy, it would be desired to estimate the sign of f . Including third-order
terms into the formula (14) and taking advantage of the transformation (7.4.25) from [4],
leading to the representation (19), one finally obtains the following expression:

f =
h

N2
2

− 1
6

{
2e

|N1N2|
+

6c

|N1N2|
− 2d

N2
2

}
where h = C333 + (A33C23 −B33C13)/Ω, C = (Lc + 3Pc)/8,

Lc = A122 + B112 + P 2
12(2A22 + B12) + P 1

12(2B11 + A12) + 2(A11P
1
22 + B22P

2
11)+

A12P
2
22 + B12P

1
11 + P 3

12(B13 + A23) + (A13C12 + 2N1B13)/(2Ω),

Pc = A111 + B222 + 2(A11P
1
11 + B22P

2
22) + A12P

2
11 + B12P

1
22+
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(B23C12 + 2N1B13)/(2Ω),

2d = B13N2/Ω + A133 + B233 + 2(A33P
3
13 + B33P

3
23)+

2(A11P
1
33 + B22P

2
33) + +A12P

2
33 + B12P

1
33,

2e = C113 + C233 + C13(P 3
13 + P 1

22) + C13P
1
11 + C23(P 2

22 + P 2
11 + P 3

23)−

P 3
12(A23 −B13)− [C12(B23 − C33) + 2C11B13]/Ω.

So the index f is rather complicated and its direct estimation meets essential difficulties.
Yet the abovementioned regimes do exist regardless of the sign of f . To make sure of
this, let us note that transformation t′ = −t, r′ = r, z′ = −z, µ′1 = −µ1, µ

′
2 = −µ2 gives

the system, which differs from (19) only in the sign of coefficient f . So it transforms
stable regimes into unstable ones and vice versa. The results obtained may be presented
as follows.
Theorem 2. If parameters ξ and K are negative, g2 is expressed by the formula (22)
and relations (9), (10), (23) hold, then system (7) possesses periodic and quasi-periodic
solutions as well as a set of homoclinic loops.

Let us stress that stability of the regimes created after the unfolding degeneracy re-
mains unidentified. Nevertheless, it may be studied either by numerical evaluation of the
coefficient f or by numerical solution of the initial–value problem for the system (7).

We have solved system (7) by means of the Runge-Kutta method. To unfold the
degeneracy, the two–parameter set of small perturbations was introduced:

−D ≡ U0 → −(D + ε), γ → γ(1− γε/D),

G → (1 + g1y)δ + g2y
2 + g3g

3.

Imposing in addition requirements g1 = −2D2E/(Kκ), one obtains the system corre-
sponding to the canonical form (19) with µ1 = −εDτ/K, and µ2 = ξτδ[D/(ΩK)]2.

Numerical simulation has been carried out with the following values of the parameters
obeying the requirements of Theorem 2:

I. A = 1.25, D =
√

2, E = 2.1, Z0 = 1, ξ = −1, g3 = −5.2, τ = 1.5;
II. A = 1, E = 0, D = 2, γ = 1.15, g3 = 8, Z0 = 1, ξ = 2, τ = 1.
In the first case, depending on ε, δ, stable periodic and quasiperiodic solutions have

been obtained as well as homoclinic loops. In the second case these patterns were found
to be unstable.

Concluding remarks

The analytical and numerical studying of self-similar solutions of the generalized hydrody-
namics system enables one to state the existence of various complicated regimes arising as
a result of interaction of nonlinear terms with the terms describing relaxing and dissipative
properties of the medium. Of special interest is the fact that oscillatory solutions of the
dynamical systems considered here correspond to the self-similar initial-value problem of
the PDE system (1) if the stationary state ahead of the wave front is spatially inhomo-
geneous. So we have obtained the evidence of the creative role of inhomogeneities in the
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process of patterns formation. For technical reasons, the spatial inhomogeneity in this
paper was connected with the external force, but generally speaking it may be attributed
to any other source (e.g., wave moving in the opposite direction).

In the case of the system closed by the first–order governing equation, analytical results
were compared with the numerical solutions of the piston problem, revealing the wave pat-
terns development behind the front of the shock wave for the values of the parameters that
correspond to the Hopf bifurcation conditions stated by Theorem 1. Note that the effect
of the shock wave fragmentation observed in numerical experiments disappears beyond
some critical values of the piston velocity.

On analyzing the balance of mass and momentum in the system closed by the first- and
second-order governing equations, we had specified parameters in such a way that system
(1) admitted a continuous group generated by the operator ∂/∂t + D∂/∂x + ξ(ρ∂/∂ρ +
p∂/∂p). This gave us possibility to employ the ansatz (2) in both cases and to compare the
travelling wave solutions corresponding to the different governing equations. On the basis
of the qualitative analysis and numerical simulations, we are able to state that in the case
of the second-order governing equation the system (1) possesses not only periodic self-
similar solutions but also quasiperiodic solutions corresponding to the toroidal attractors
as well as solitary wave solutions corresponding to the homoclinic loops. We should stress
that existence of the last two types of solutions is directly linked with the inclusion of
higher-order terms into the governing equation so the patterns become more and more
complicated as we proceed away from the equilibrium.

Note that when studying the system (8) we have obtained the expression for the indices
of the canonical Poincaré form of an arbitrary three-dimensional dynamical system with
(0,±iΩ) degeneracy of the linear part (cf. equations (17) and (24)) as a by-product.

We would like to remark in conclusion that the canonical forms technique [4], employed
to classify the regimes arising after the degeneracy has been removed, is very similar to
the method put forward by W.I. Fushchych in thev early 70s in order to investigate a non-
Lie symmetry of linear systems of PDE. The procedure of obtaining the canonical form
corresponding to system (8) is evidently based on a ”hidden” symmetry of its linear part,
yet employment of the asymptotic methods together with averaging procedure enables one
to analyze nonlinear problems (cf also [5])1.
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