Symmetry Reduction of Poincaré-Invariant Nonlinear Wave Equations

A.F. BARANNYK and Yu.D. MOSKALENKO
Department of Mathematics, Pedagogical University, Ostrogradsky Street 2, 314003, Poltava, Ukraïna

Abstract

Reduction of multidimensional Poincaré-invariant equations to ordinary differential equations and 2 -dimensional equations is considered.

Let us consider the nonlinear wave equation

$$
\begin{equation*}
\Phi\left(\square u,(\nabla u)^{2}, u\right)=0 \tag{1}
\end{equation*}
$$

where $u=u(x)$ is a scalar function of the variable $x, \quad x=\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in R_{1, n}$,

$$
\square u=\frac{\partial^{2} u}{\partial x_{0}^{2}}-\frac{\partial^{2} u}{\partial x_{1}^{2}}-\cdots-\frac{\partial^{2} u}{\partial x_{n}^{2}}, \quad(\nabla u)^{2}=\left(\frac{\partial u}{\partial x_{0}}\right)^{2}-\left(\frac{\partial u}{\partial x_{1}}\right)^{2}-\cdots-\left(\frac{\partial u}{\partial x_{n}}\right)^{2}
$$

The equation (1) is invariant under the Poincaré algebra $A P(1, n)$. The basis of this algebra is formed by the following vector fields

$$
\begin{equation*}
P_{\mu}=\partial_{\mu}, \quad J_{0 a}=x_{0} \partial_{a}+x_{a} \partial_{0}, \quad J_{a b}=x_{b} \partial_{a}-x_{a} \partial_{b}, \tag{2}
\end{equation*}
$$

$\mu=0,1, \ldots, n ; a, b,=1,2, \ldots, n$.
A great number of well-known equations are particular cases of the equation (1).
Let's take for instance the d'Alembert equation

$$
\begin{equation*}
\square u+\lambda u^{k}=0 \tag{3}
\end{equation*}
$$

the Liouville equation

$$
\begin{equation*}
\square u+\lambda \exp u=0 \tag{4}
\end{equation*}
$$

the sine-Gordon equation

$$
\begin{equation*}
\square u+\lambda \sin u=0 \tag{5}
\end{equation*}
$$

the eikonal equation

$$
\begin{equation*}
(\nabla u)^{2}=1 \tag{6}
\end{equation*}
$$

The reduction problem of the equation (1) is very important. The main point of reduction consists in introduction of new variables $\omega_{1}(x), \ldots, \omega_{k}(x)(1 \leq k \leq n)$ being functions of x and having property that the ansatz $u=\varphi\left(\omega_{1}, \ldots, \omega_{k}\right)$ reduces the equation
(1) to one with a smaller number of variables $\omega_{1}, \ldots, \omega_{k}$. The construction of all ansatzes for the equation (1) is a very difficult problem.

The problem is more easy if variables $\omega_{1}, \ldots, \omega_{k}$ are invariants of some subalgebra of the algebra $A P(1, n)$. These variables are called invariant variables. It is easy to find invariant variables if the optimal system of subalgebras of the algebra $A P(1, n)$ is known. It is impossible in practice to construct the optimal system of subalgebras of the algera $A P(1, n)$ in a general case (for an arbitrary n). But the situation isn't hopeless, because for symmetry reduction it is enough to know subalgebras having essentially different systems of invariants.
Definition. Two subalgebras $L_{1}, L_{2} \subset A P(1, n)$ are called equivalent if there exists a group transformation φ transforming the system of invariants of the subalgebra L_{1} into that L_{2}.

This relation is a more strong relation on the set of all subalgebras of the algebra $A P(1, n)$ than the relation of conjugation.

Among all subalgebras of the algebra $A P(1, n)$ having the same invariants, there exists the algebra containing all subalgebras having this property. This subalgebra is called I maximal. Two I-maximal subalgebras are equivalent iff they are conjugate. I-maximal subalgebras differ advantageously from the rest subalgebras of the algebra $A P(1, n)$. They are determined uniquely and have a more easy structure. Thus it is enough to construct the system of I-maximal subalgebras of the algebra $A P(1, n)$ instead of the optimal system of subalgebras.

Grundland A.M., Harnad J., Winternitz P. [1] classified I-maximal subalgebras of rank n of the algebra $A P(1, n)$. It allowed to construct seven ansatzes reducing the equation (1) to ordinary differential equations.

The problem of classification of I-maximal subalgebras of the algebra $A P(1, n)$ was solved in works $[2,3]$. These results, in particular, imply that there exist 14 types of ansatzes reducing the equation (1) to 2-dimensional equations. Let us adduce main types of these ansatzes

$$
u=\varphi\left(\omega_{1}, \omega_{2}\right):
$$

1) $\omega_{1}=x_{0}, \omega_{2}=x_{n}$;
2) $\omega_{1}=x_{0}, \quad \omega_{2}=x_{1}^{2}+\ldots+x_{m}^{2}, m=1,2, \ldots, n$;
3) $\omega_{1}=x_{0}-x_{n}, \quad \omega_{2}=x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}, \quad m=1,2, \ldots, n-1$;
4) $\omega_{1}=x_{1}^{2}+\ldots+x_{m}^{2}, \quad \omega_{2}=x_{0}^{2}-x_{n}^{2}, m=1,2, \ldots, n-1$;
5) $\omega_{1}=x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}, \quad \omega_{2}=x_{m+1}, \quad m=2,3, \ldots, n-2$;
6) $\omega_{1}=x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}, \quad \omega_{2}=x_{m+1}^{2}+\ldots+x_{q}^{2}$,

$$
m=2,3, \ldots, n-2 ; \quad q=m+1, \ldots, n
$$

7) $\omega_{1}=\left(x_{0}-x_{n}\right)^{2}-4 x_{1}, \quad \omega_{2}=\left(x_{0}-x_{n}\right)^{3}-6 x_{1}\left(x_{0}-x_{n}\right)+6\left(x_{0}+x_{n}\right)$;
8) $\omega_{2}=x_{0}-x_{n}, \quad \omega_{1}=\left(x_{0}^{2}-\sum_{i=1}^{n} \frac{x_{0}-x_{n}}{x_{0}-x_{n}-\gamma_{i}}\left(x_{d_{i-1}+1}^{2}+\cdots+x_{d_{i}}^{2}\right)-x_{n}^{2}\right)^{\frac{1}{2}}$,

$$
\begin{aligned}
d_{0} & =0, d_{1}, d_{2}, \ldots, d_{t} \in R, d_{0}<d_{1}<\ldots<d_{t}=m, m \leq n, \gamma_{i} \in R \\
\text { 9) } \omega_{1} & =x_{0}^{2}-x_{n}^{2}, \quad \omega_{2}=\alpha \ln \left(x_{0}+x_{n}\right)-x_{1}, \alpha>0 \\
\text { 10) } \omega_{1} & =x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}, \quad \omega_{2}=\alpha \ln \left(x_{0}-x_{n}\right)+x_{m+1} \\
m & =1,2, \ldots, n-2, \quad \alpha>0 \\
\text { 11) } \omega_{1} & =x_{1}^{2}+x_{2}^{2}, \quad \omega_{2}=x_{0}+\arctan \frac{x_{2}}{x_{1}}
\end{aligned}
$$

Each of these ansatzes may be written in a more general form using transformations of the group $P(1, n)$.

Let us consider the nonlinear d'Alembert equation

$$
\begin{equation*}
\square u+\lambda u^{k}=0 \tag{7}
\end{equation*}
$$

in the Minkowski space $R_{1, n}$. The equation (7) has been investigated in works [4, 5].
The equation (7) is invariant under the extended Poincaré algebra $A \tilde{P}(1, n)$ being obtained from the algebra $A P(1, n)$ by adding the dilatation operator

$$
D=-x_{0} \partial_{0}-\ldots-x_{n} \partial_{n}+\frac{2}{k-1} u \partial_{u}
$$

There exists the simple algorithm which allows to classify I-maximal subalgebras of the algebra $A P(1, n)$ if the classification of I-maximal subalgebras of the algebra $A P(1, n)$ is known. It allows to construct all symmetry ansatzes reducing the equation (7) to ordinary differential equations. The following ansatzes are obtained:

1) $u=x_{0}^{\frac{2}{1-k}} \varphi(\omega), \quad \omega=\frac{x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}}{x_{0}^{2}}, \quad m=1,2, \ldots, n ;$
2) $u=\left(x_{0}-x_{n}\right)^{\frac{2}{1-k}} \varphi(\omega), \quad \omega=\frac{\left(x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}\right)^{\frac{1}{2}}}{x_{0}-x_{n}}$,

$$
m=1,2, \ldots, n-1
$$

3) $u=\left(x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}\right)^{\frac{1}{1-k}} \varphi(\omega)$,

$$
\omega=\delta \ln \left(x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}\right)-\ln \left(x_{0}-x_{n}\right), \quad m=1,2, \ldots, n-1
$$

4) $u=\left(x_{0}-x_{n}\right)^{\frac{1}{1-k}} \varphi(\omega), \quad \omega=\frac{x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}}{x_{0}-x_{n}}+\ln \left(x_{0}-x_{n}\right)$,

$$
m=1,2, \ldots, n-1
$$

5) $u=\left(x_{1}^{2}+\ldots+x_{m}^{2}\right)^{\frac{1}{1-k}} \varphi(\omega), \quad \omega=\frac{x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}}{x_{0}^{2}-x_{n}^{2}}, m=1,2, \ldots, n-1$;
6) $u=x_{m+1}^{\frac{2}{1-k}} \varphi(\omega), \quad \omega=\frac{x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{n}^{2}}{x_{m+1}^{2}}, \quad m=1,2, \ldots, n-2$.

Let us consider the multidimensional eikonal equation

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x_{0}}\right)^{2}-\left(\frac{\partial u}{\partial x_{1}}\right)^{2}-\ldots-\left(\frac{\partial^{2} u}{\partial x_{n-1}}\right)^{2}=1 \tag{8}
\end{equation*}
$$

where $u=u(x)$ is a scalar function of the variable $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right), n \geq 2$. The equation (8) is invariant under the conformal algebra $A C(1, n)$. The algebra $A C(1, n)$ contains the extended Poincaré algebra $A P(1, n)$ being generated by the vector fields:

$$
\begin{aligned}
P_{\alpha}= & \partial_{\alpha}, J_{0 a}=x_{0} \partial_{a}+x_{a} \partial_{0}, J_{a b}=x_{b} \partial_{a}-x_{a} \partial_{b}, D=-x^{\alpha} \partial_{\alpha}, x_{n}=u \\
& \quad(\alpha=0,1, \ldots, n ; \quad a, b=1,2, \ldots, n)
\end{aligned}
$$

Let us use maximal subalgebras of rank $n-1$ of the algebra $A \tilde{P}(1, n)$ to find ansatzes reducing the equation (8) to ordinary differential equations. As consequence we obtain 18 types of the following ansatzes [6]. All these ansatzes are split into three classes. Below we adduce the examples of ansatzes for each of the classes.
I. Ansatzes of the type $u=f(x) \varphi(\omega)+g(x), \omega=\omega(x)$

1) $u=\varphi(\omega), \omega=x_{0}$;
2) $u=\varphi(\omega)+\ln \left(x_{o}+x_{m+1}\right), \quad \omega=x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}-x_{m+1}^{2}$,

$$
m=0,1, \ldots, n-1 ; n \geq 3
$$

II. Ansatzes of the type $u^{2}=f(x) \varphi(\omega)+g(x), \omega=\omega(x)$

1) $u^{2}=\varphi(\omega)-x_{1}^{2}-\ldots-x_{m}^{2}, \omega=x_{0}-x_{n}, \quad m=1,2, \ldots, n-1$;
2) $u^{2}=\varphi(\omega)+x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}, \omega=x_{0}-x_{m}, \quad m=1,2, \ldots, n-1$;
3) $u^{2}=\left(x_{n-2}^{2}+x_{n-1}^{2}\right) \varphi(\omega)+x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}, \quad \omega=2 \ln \left(x_{0}-x_{m}\right)-(1+\alpha) \ln \left(x_{n-2}^{2}+\right.$ $\left.x_{n-1}^{2}\right)-2 C \arctan \frac{x_{n-1}}{x_{n-2}}, \quad m=1,2, \ldots, n-3 ; \quad n \geq 4, C>0, \quad \alpha \geq 0$.
III. Ansatzes of the type $h(u, x)=f(x) \varphi(\omega)+g(x), \omega=\omega(u, x)$
4) $u=\frac{1}{4} \varphi(\omega)+\frac{1}{4}\left(x_{0}-x_{1}\right)^{2}, \omega=\left(x_{0}-x_{1}\right)^{3}-6 u\left(x_{0}-x_{1}\right)+6\left(x_{0}+x_{1}\right)$;
5) $u^{2}=\varphi(\omega)-x_{1}^{2}, \omega=x_{0}+\arctan \frac{u}{x_{1}}$;
6) $u^{2}=\left(x_{0}-x_{2}\right) \varphi(\omega)-x_{1}^{2}, \omega=x_{0}+x_{2}+\ln \left(x_{0}-x_{2}\right)+2 \alpha \arctan \frac{u}{x_{1}}, \alpha \geq 0$.

The search for additional symmetries of differential equations is an important problem of investigations concerning partial differential equations. One of the possible ways to solve this problem is a study of the symmetry of the 2-dimensional reduced equations.

Let us consider, for instance, the symmetry ansatz

$$
\begin{equation*}
u=u\left(\omega_{1}, \omega_{2}\right) \tag{9}
\end{equation*}
$$

where $\omega_{1}=x_{0}-x_{m}, \quad \omega_{2}=x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2} \quad(m=2,3, \ldots, n)$. The ansatz (9) reduces the d'Alembert equation (7) to the 2-dimensional equation

$$
\begin{equation*}
4 \omega_{1} u_{12}+4 \omega_{2} u_{22}+2(m+1) u_{2}+\lambda u^{k}=0 \tag{10}
\end{equation*}
$$

where $u_{12}=\frac{\partial^{2} u}{\partial \omega_{1} \partial \omega_{2}}, u_{22}=\frac{\partial^{2} u}{\partial \omega_{2}^{2}}, u_{2}=\frac{\partial u}{\partial \omega_{2}}$.

Theorem 1 The maximal algebra of invariance of equation (10) in the case of $k \neq$ $0, \frac{m+1}{m-1}$ and $m>1$ in the Lie sense is the 4 -dimensional Lie algebra $A(4)$ which is generated by such operators:

$$
\begin{aligned}
& X_{1}=\omega_{1} \frac{\partial}{\partial \omega_{1}}+\omega_{2} \frac{\partial}{\partial \omega_{2}}-\frac{1}{k-1} u \frac{\partial}{\partial u}, \quad X_{2}=\omega_{2} \frac{\partial}{\partial \omega_{2}}-\frac{1}{k-1} u \frac{\partial}{\partial u} \\
& X_{3}=\omega_{1} \frac{\partial}{\partial \omega_{2}}, \quad M=\omega_{1}^{l}\left(\omega_{1} \frac{\partial}{\partial \omega_{1}}+\omega_{2} \frac{\partial}{\partial \omega_{2}}-\frac{m-1}{2} u \frac{\partial}{\partial u}\right)
\end{aligned}
$$

where $l=\frac{(m-1)(k-1)}{2}-1$.
Theorem 2 The maximal algebra of invariance of equation (10) in the case of $k=\frac{m+1}{m-1}$ and $m>1$ in the sense of Lie is the 4-dimensional Lie algebra $B(4)$ which is generated by such operators:

$$
\begin{aligned}
& S=\omega_{1} \ln \omega_{1} \frac{\partial}{\partial \omega_{1}}+\omega_{2} \ln \omega_{1} \frac{\partial}{\partial \omega_{2}}-\frac{m-1}{2} \ln \left(\omega_{1}+1\right) u \frac{\partial}{\partial u} \\
& Z_{1}=\omega_{1} \frac{\partial}{\partial \omega_{1}}+\omega_{2} \frac{\partial}{\partial \omega_{2}}-\frac{m-1}{2} u \frac{\partial}{\partial u}, \quad Z_{2}=\omega_{2} \frac{\partial}{\partial \omega_{2}}-\frac{m-1}{2} u \frac{\partial}{\partial u}, \quad Z_{3}=\omega_{1} \frac{\partial}{\partial \omega_{2}}
\end{aligned}
$$

Let us note that $X_{1}, X_{2}, X_{3}\left(Z_{1}, Z_{2}, Z_{3}\right)$ are operators of the algebra of invariance of the d'Alembert equation. But these operators are written in new variables. The operator M isn't a symmetry operator of the equation (7). Also the operator S isn't a symmetry operator of the equation (7).

The operators M and S allow to construct new ansatzes reducing the d'Alembert equation to ordinary differential equations. Let us adduce some types of such ansatzes:

$$
\begin{aligned}
\text { 1) } u & =\left[\left(x_{0}-x_{m}\right)^{\frac{(m-1)(k-1)}{2}-1}\left(x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}\right)\right]^{\frac{1}{1-k}} \varphi(\omega) \\
\omega & =\frac{\alpha}{l}\left(x_{0}-x_{m}\right)^{-l}+\ln \frac{x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}}{x_{0}-x_{m}} \\
\text { 2) } u & =\left(x_{0}-x_{m}\right)^{\frac{1-m}{2}} \varphi(\omega), \quad \omega=\frac{x_{0}^{2}-x_{1}^{2}-\ldots-x_{m}^{2}}{x_{0}-x_{m}}+\frac{\varepsilon}{l}\left(x_{0}-x_{m}\right)^{-l}
\end{aligned}
$$

References

[1] Grundland A.M., Harnad J., Winternitz P. Symmetry reduction for nonlinear relativistically invariant equations, J. Math. Phys., 1984, V.25, N 4, 791.
[2] Fushchych W.I., Barannyk A.F., Maximal subalgebras of the rank $n-1$ of the algebra $A P(1, n)$ and reduction of nonlinear wave equations, Ukr. Math. J., 1990, V.42, N 11, 1250-1256; N 12, 1693-1700.
[3] Barannyk A.F., Barannyk L.F., Fushchych W.I., Reduction of multidimensional Poincaré-invariant nonlinear equation to 2-dimensional equations, Ukr. Math. J., 1991, V.43, N 10, 1311-1323.
[4] Fushchych W.I., Serov N.I., The symmetry and some exact solutions of the nonlinear many-dimensional Liouville, d'Alembert and eikonal equations, J. Phys. A, 1983, V.16, 3645-3658.
[5] Barannyk A.F., Barannyk L.F., Fushchych W.I., Reduction of the multi-dimensional d'Alembert equation to 2-dimensional equations, Ukr. Math. J., 1994, V.46, N 6, 651-662.
[6] Barannyk A.F., Fushchych W.I., Ansatzes for the eikonal equations, Dop. NAN Ukr., 1993, N 12, 41-43.

