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Abstract

We consider discontinuous flows of relativistic magnetic fluid with a general equation
of state that is not supposed to be normal in the sense of Bethe and Weyl. The criteria
of admissibility of the shock waves without a supposition of the relativistic version of
the convexity condition are obtained. The results are used to analyze the cases of
perpendicular and parallel shock waves.

1. It is well known that the uniqueness of solutions of an initial value problem for quasi-
linear equations such as equations of fluid dynamics may be lost if discontinuities of initial
data are present [1]. In this case some additional requirements are needed to single out a
unique discontinuous solution. In hydrodynamics with a normal equation of state (in the
sense of Bethe and Weyl [1]) the role of such a requirement is fulfilled by the entropy cri-
terion. In case of anomalous fluid with a nonconvex equation of state some more stringent
criteria are needed that may be represented as requirements to the form of shock adiabate
(see, e.g., [2], [3]). The generalization to the relativistic shock waves is worked out in [4],
[5].

In this paper the analogous problem in relativistic magnetohydrodynamics is consid-
ered. In order to formulate the conditions for existence of admissible shock waves in the
fluid with a nonconvex (in the relativistic sense) equation of state we modify the approach
of [4], [5] based on the small viscosity considerations. The resulting criterion is expressed
in terms of shock adiabats, defined by the equation of state, and some pattern curves in the
plane of thermodynamic coordinates pressure-conserving charge density. This criterion is
applied to study parallel and perpendicular shocks in a one-dimensional magnetohydro-
dynamic flow.

We start from the equations of motion of a viscous relativistic fluid with perfect elec-
trical conductivity, permeated by a magnetic field [6], [7]

0y (TH 4+ 7H7) = 0, (1)
Ay (uPhY — u’h*) =0, (2)
y, (nut) = 0, (3)
htu,, = 0, (4)
™, = 0; (5)
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where
v * * 124 * v 1 1%
T = (p* + &%) ut'u” — p*g"” — —h'h
4r

is the magnetohydrodynamic relativistic energy-momentum tensor with u* being 4-ve-
locity, h* = —le““ﬂ'yF nBlU~ being 4—Vect0r of the rnagnetlc field (Fip is the tensor of
electromagnetic field here) and p* = p + & |h| =c+ & |h|?, p is the pressure and e
is the specific energy density, n is the den51ty of some conserved charge, 0, = 0/0z* and

ou®
Tuw = 1 (U + U — Upu™ Uy 0 — WU Uy a) + (C - 77> Oz (Ina — upuy)

is the relativistic viscosity tensor [6].

We assume that the equation of state p = p(V, €) is represented by a sufficiently smooth
function.

In the limit of small viscosity we expect that solutions of hydrodynamic equations yield
the discontinuous flows describing shock waves.

It is sufficient to confine our consideration to one-dimensional fluid motion along the
x axis. In the rest frame of the discontinuity located at the surface x = 0 the following
conditions hold

{nul} -0, {Tlﬂ} -0 (6)

(conservation of current and energy-momentum),

{ulhﬁ—uﬁhl} =0 (7)

(continuity of the normal component of magnetic field and tangential component of electric
field).

Here {A} = A; — Ap, where A; is a quantity ahead of the shock and Ay is a quantity
behind the shock. It is easy to see that u%0)7(1) and h?o),(l) may be taken zero.

From conservation laws and the Maxwell equations one obtains the equations that
relate the sets of hydrodynamic and electrodynamic quantities u?o), no, po and u’(”tl),nl, P1
on both sides of the shock. Both sets are located on the magnetohydrodynamic analogue
of the Taub adiabat defined by the equation [7]:

1
H=w?V? - wiVi + (wV2 + wOVOQ) (p—po) + 3 (wV2 — w()VO2> (¢ —1hg)? = 0,(8)

where w = ¢ + p, ¥ = h2 + |h|* (1 — u2). We assume that:

(a) the equation (8) has unique solution with respect to p in all domain of parameters
changing;

(b) the Bethe assumption (dp/0s),, > 0 holds.

We shall investigate the boundary problem that describes a shock wave in the limit
of viscosity tending to zero. The existence conditions of the solution of this problem are
then interpreted as the conditions of admissibility of the shock transition u’{o),no, Py —
ué‘l), ni,p1, where the corresponding quantities satisfy the relations (6)—(7) on the shock
wave.
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2. Consider stationary motion of fluid with all the quantities depending only on x and
u3 =0, h3 = 0. The equations (1)—(3) give the following

TY 4+ 7% = const, (9)
urh? — htu¥ = H” = const, (10)
nu! = j = const. (11)

For the set (9)-(11), (4)—(5) we assume that under x — +oo all quantities tend to
some constant values, which are marked by ”0” and ”1”. It is easy to see that points 70"
and 717 lay on shock adiabat (8). If the viscosity tends to zero, we obtain the conditions
(6)—(7) exactly.

In order to simplify the problem we take 7 to be zero. Equations (9) yield

) 1
e (0)) G =T

5*u1 — T&S“M? (12)
<H2U2 _ HOUO) (H2U0 _ HOUQ) = 47‘(‘“,1 (T(I(S’LL2 — T(IOQ)UO) 5 (13)

where H?u? — Hu® = h'.

The last equation can be easily studied after rewriting it in terms of the three-
dimensional velocity components v; = u! /u®, vy = u?/u’. The result of the investigation
shows that there are two physical branches of the curve vy (v1) corresponding to ”fast” and
”slow” shock waves. Further we suppose that we are working on a connected component
of this curve.

The set of equations (10)—(13), and (4) gives our solution to be found. And we have
to find under which conditions this solution exists. Note that only differential equation
(14) may be written as

L =pV.EW) - B(V). (14)

where the function p (V') is determined through the equations (10), (11), (13) and (V)
by (12). From the necessary and sufficient conditions of existence of solution of equation
(14) with boundary conditions u“l),pl,nl for x — +o00 and u’(‘o),po,ng for x — —o0, we
obtain the following criterion of admissibility of shock transition:

(¢) the equation (13) has a regular solution u? = u?(V') between Vj and Vi;

d M—=Vo)(p(V,e(V))—p(V)) =0 (15)

for all V' between V; and V;.
The following theorem states the other form of criterion where p (V,£(V)) is changed
by shock adiabat.

Theorem. Let the assumptions (a), (b) hold. Then the condition (15) is equivalent to
the condition

Vi—=Vo)(par (V) —p(V)) =0



ONE-DIMENSIONAL DISCONTINUOUS FLOWS 217

with the shock adiabat pr (V') determined from the equation (8).

3. The pattern function p (V') can be easily derived for the special cases of parallel and per-
pendicular shock waves. For the parallel shock wave u? = 0, h? = 0 and for perpendicular
that u?> = 0, h! = 0. Consequently, H?> = 0 and H° = 0, respectively. For both cases
equation (13) is satisfied identically.

For the parallel shock wave we obtain the pattern function

1\ 2 10
sy L (M) gy T
Note that the condition (¢) for the solution of (14) in case of the parallel shock wave
also must be taken into account though (13) is satisfied trivially by u? = 0. This restricts

the domain of possible shock transitions.
For the perpendicular shock wave we obtain

2

10 1 2

n LedVv 1 (ufyhty)
L+72V2 dm 22

In this case the condition (¢) leads to no restrictions. The solution of an arbitrary
decay problem can be obtained here in analogy to [8], [9].
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