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Abstract

Symmetry properties of some Fokker-Planck equations are studied. In the one-dimen-
sional case, when symmetry groups turn out to be six-parameter ones, this allows to
find changes of variables to reduce such Fokker-Planck equations to the one-dimensi-
onal heat equation. The symmetry and the family of exact solutions of the Kramers
equation are obtained.

The one-dimensional Fokker-Planck (FP) equation has the form

∂u

∂t
= − ∂

∂x

[
A(x, t)u

]
+

1
2

∂2

∂x2

[
B(x, t)u

]
, (1)

where u = u(x, t) is the probability density; A and B are differentiable functions. This
is the basic equation in the theory of continuous Markovian processes. The following FP
equations are of special interest [1, 2]:

(a) diffusion in a gravitational field

∂u

∂t
=

∂

∂x

(
gu
)

+
1
2
D

∂2u

∂x2 , (2)

(b) the Ornstein-Uhlenbeck process

∂u

∂t
=

∂

∂x

(
kxu

)
+

1
2
D

∂2u

∂x2 , (3)

(c) the Rayleigh-type process

∂u

∂t
=

∂

∂x

[(
γx− µ

x

)
u

]
+

1
2
µ

∂2u

∂x2 , (4)

(d) models in population genetics [2]

∂u

∂t
=

α

2
∂2

∂x2

[
(x− c)2u

]
+ β

∂

∂x

[
(x− c)u

]
, (5)
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∂x2

[(
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)2
u
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(
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)2
u
]
, (7)

Copyright c© 1997 by Mathematical Ukraina Publisher.

All rights of reproduction in any form reserved.



SYMMETRY PROPERTIES AND EXACT SOLUTIONS 133

(c) the Rayleigh process

∂u

∂t
=

∂

∂x

[(
γx− µ

x

)
u

]
+ µ

∂2u

∂x2 , (8)

where D, g, k, γ, µ, α, β, c are arbitrary constants.
Using Lie’s method [3], one can make sure of that the maximal invariance group of

equations (2)–(7) is a six-parameter one. The invariance group of the heat equation has
the same dimension. It is to be pointed out that these six-parameter groups are different
but they are locally isomorphic. That is why, one can reduce equations (2)–(7) to the heat
equation.

Theorem 1 The change of variables

u(x, t) = f(x, t)ω(y(x, t), τ(x, t)), (9)

where the function f and new independent variables y and τ are as follows:

f = exp

{
− g

D
x− g2

2D
t

}
, y = x, τ =

D

2
t, (10)

f = exp
{
kt
}
, y = exp

{
kt
}
x, τ =

D

4k
exp

{
2kt
}
, (11)

f = exp
{
2γt
}
x, y = exp

{
γt
}
x, τ =

µ

4µ
exp

{
2γt
}
, (12)

f = exp

{
−
(

β2

2α
+

β

2
+

α

8

)
t

}
(x− c)−(3/2+β/α), y =

√
2
α

ln(x− c), τ = t, (13)

f = exp
{
−t
}(

1− x2
)−3/2

, y =
1
2

ln
1 + x

1− x
, τ = t, (14)

f = exp
{
−α

8
t

}
x−3/2(1− x)−3/2 y = ln

x

1− x
, τ =

α

2
t, (15)

reduce equations (2)–(7), correspondingly, to the heat equation

ωτ = ωyy. (16)

The proof can be easily obtained by inspection.
Remark 1. One can prove a more general statement. Equation (1) with coefficients

A(x, t) = A(x), B(x, t) = B = const (17)

is reduced to the heat equation if and only if

A2 + B
∂A

∂x
= c2x

2 + c1x + c0, (18)

where c0, c1, c2 are arbitrary constants. Note that equations (2)–(7) satisfy condition (18)
and equation (8) does not. The general solution of equation (18), which is a Riccati one,
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cannot be obtained in quadratures [4].
Remark 2. The FP equation of the form

∂u

∂t
= − ∂

∂x

[
(a(t)x + b(t))u

]
+ c(t)

∂2u

∂x2 (19)

was consider in [5, 6] and by means of algebraic methods a class of it was obtained. This
result can be easily obtained if we note that equation (19) is reduced to the heat equation
(16) by the substitution (9) with

f = exp
{
−

t∫
0

a(s)ds
}
,

y = exp
{
−

t∫
0

a(s)ds
}
x−

t∫
0

b(s) exp
{
−

s∫
0

a(ξ)dξ
}
ds,

τ =
t∫

0

c(s) exp
{
−2

s∫
0

a(ξ)dξ
}
ds.

(20)

Now consider the two-dimensional FP equation which describes the motion of a particle
in a fluctuating medium (so-called Brownian movement)

∂u

∂t
= − ∂

∂x

(
yu
)

+
∂

∂y

(
V ′(x)u

)
+ γ

∂

∂y

(
yu +

∂u

∂y

)
, (21)

where u = u(t, x, y), γ is a constant and V (x) is the potential (its gradient defines the
exterior force). Equation (21) is known as the Kramers equation [1].

Theorem 2 The maximal invariance group of the free Kramers equation

∂u

∂t
= − ∂

∂x

(
yu
)

+ γ
∂

∂y

(
yu +

∂u

∂y

)
(22)

is a six-dimensional Lie group generated by the following operators:

P0 = ∂t, P1 = ∂x, I,

G1 = t∂x + ∂y + 1
2(y + γx),

S1 = eγt
(

1
γ ∂x + ∂y + y

)
, T1 = e−γt

(
1
γ ∂x − ∂y

) (23)

which satisfy the commutation relations[
P0, G1

]
= P1,

[
P0, S1

]
= γS1,[

P0, T1

]
= −γT1,

[
P1, G1

]
= −1

2γ,
[
T1, S1

]
= I

(24)

(the rest of the commutators are equal to zero).
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The proof can be obtained by Lie’s method.
Remark 3. One can prove a more general statement: the widest symmetry group of
equation (21) is achieved when V ′(x) = c1x + c (c1, c are arbitrary constants) and it is a
six–parameter group.
Remark 4. The change of variables

u = ω(τ, ξ, η), τ = t, ξ = x− c

γ
t, η = y − c

γ
(25)

reduces equation (21) with V ′(x) = c to the free Kramers equation (22).
Let us write down the final transformations generated by operators (23). Operators P0

and P1 generate translations on variables t and x; I generates the identical transformation;
G generates

t′ = t, x′ = x + at, y′ = y + a,

u′(x′) = exp
{
−1

2

[
ay + a2

2 (1 + γt) + γax

]}
u(x);

(26)

S1 generates

t′ = t, x′ = x + b
γ eγt, y′ = y + beγt,

u′(x′) = exp
{

byeγt − b2

2 e2γt

}
u(x);

(27)

T1 generates

t′ = t, x′ = x + θ
γ e−γt, y′ = y − θe−γt, u′(x′) = u(x), (28)

where a, b, θ are the group parameters. It is appropriate to write here the correspond-
ing formulae of generating solutions which follow from (26)–(28) (the general theory is
contained in [7]):

uII(t, x, y) = exp
{

a

2

[
y +

a

2
(1 + γt) + γx

]}
uI(t′, x′, y′), (29)

uII(t, x, y) = exp

{
−byeγt +

b2

2
e2γt

}
uI(t′, x′, y′), (30)

uII(t, x, y) = uI(t′, x′, y′), (31)

where t′, x′, y′ are given in (26)–(28), respectively.
It should be noted that transformations (26) are just the Galilean ones as soon as the

variable y in the Kramers equation is taken to be velocity of the particle.
A well-known solution of the Kramers equation (21) is the Boltzmann distribution

u(x, y) = N exp
{
−v(x)− 1

2
y2
}

(32)

(N is a normalization constant). It is stationary solution. Applying this to (32) with
V = 0, formulae (29)–(31), one can easily obtain a non-stationary solution of equation
(22).

According to the algorithm of [8,7] and using the operator from (23), we find the ansatz



136 V. STOHNY

u(t, x, y) = exp

{
−y2

2

}
ϕ(ω1, ω2), ω1 = t, ω2 = γx− y. (33)

Substitution of (33) into (22) gives rise to the heat equation

∂ϕ

ω1
− γ

∂2ϕ

∂ω2
= 0. (34)

The simplest solution of (34) is ϕ = const, but it is the solution that leads, together with
the ansatz (33), to the Boltzmann distribution (32). It is clear that by using solutions
of the heat equation (34) and the ansatz (33), one can construct many partial solutions
of equation (22). For example, the fundamental solution of (34) and (33) results in the
following solution of equation (22):

u(t, x, y) =
1√

4πγt
exp

{
−y2

2
− (γx− y)2

4γt

}
. (35)

The operators T1 from (23) lead to the ansatz

u = ϕ̃(ω1, ω2), ω1 = t, ω2 = γx + y (36)

which reduces (23) to the heat equation (34), where ϕ = eγω1ϕ̃(ω1, ω2).
A great number of partial solutions of equation (23) can be found by means of the

method described in [9](see also [7]). So, if u0 = u0(t, x, y) is a solution of the equation,
then the functions Qu0, Q

2u0, . . . will also be solutions with any symmetry operator Q.
For example, starting from u0 = eγt, we find

u1 = 2G1e
γt = eγt(γx + y), u2 = G1u1 = eγt

[
(γt + 1) + 1

2(γx + y)2
]
, · · · (37)

Analogously, by means of the operators T1 from (23), we find, starting from u0 = e−y2/2,

u1 = T1 exp
{
−y2

2

}
= y exp

{
−
(

γt + y2

2

)}
,

u2 = T1u1 = (y2 − 1) exp
{
−
(

2γt + y2

2

)}
, · · · · · ·

(38)

Solutions (35), (37) and (38) can be multiplied by the formuale of the generating solutions
(29)–(31).
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