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Abstract

Self-dual Yang-Mills fields with values in a Lie superalgebra on the four-dimensional
Euclidean space and pseudo-Euclidean space of signature (2,2) can be reduced by
subgroups of the corresponding conformal group to integrable systems with anticom-
muting degrees of freedom. Examples of reductions are presented.

1 Introduction

The self-dual Yang-Mills (hereafter abbreviated: SDYM) equations with fields taking val-
ues in an (ordinary) Lie algebra have previously been investigated using the method of sym-
metry reduction [1-4]. From their complete integrability through the twistor construction
[5-7], whether these equations are defined on E4, the four-dimensional Euclidean space,
or E(2,2), R4 endowed with the diagonal metric of zero signature: diag(+1,+1,−1,−1),
reductions to known integrable systems have been obtained under subgroups of their space
invariance group: SO(5, 1)(E4) and SO(3, 3)(E(2,2)). For example, the Nahm [8-10], Eu-
ler [11], Chazy [11], (modified, matrix) Korteweg-de Vries (KdV) [12-17], (generalized)
nonlinear Schrödinger (NLS) [12-14, 17], Boussinesq [15, 16], N-wave [18], (non)-periodic
Toda lattice [17], static non-Abelian Chern-Simons [19], Kadomtsev-Petviashvili (KP) and
Davey-Stewartson equations [18] have been retrieved with translational symmetries as well
as the Ernst [20, 21] and Painlevé (PI to PV I) [22] equations with symmetries involving
dilations and/or rotations. Accordingly, the reduced SDYM equations can be seen as the
compatibility conditions of similarly reduced corresponding linear systems, also called Lax
pairs [5, 6, 17, 23].

Comparable results have been obtained for self-dual gravity, where the sl(∞)-Toda and
Gibbons-Hawking equations [24-26] have been recovered via symmetry reductions, along
with a set of hidden symmetries [27]. Supersymmetric extensions of various integrable
models, such as super-Liouville, super-KdV, and super-Toda, have also been derived with
the same method from supersymmetric generalizations of the SDYM equations, some
with the help of added differential constraints [28, 29]. Let us mention that versions of
heterotic N = 2 strings (with gauge symmetry) possess, as a consistent background, a
(null) translational symmetry reduction of co-dimension 2 (residual dimension equal to 2)
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of the SDYM equations [30, 31], let alone that N = 2 strings in four dimensions could be
integrable systems [32], as suggested by scattering amplitudes calculations.

In addition, it has been shown that hierarchies of well-known integrable systems, such
as KdV, NLS, and KP, could be recovered through reduction via translations of a universal
hierarchy of commuting flows with the SDYM flow as an initial flow [33]. On a similar note,
a supersymmetric version of the AKNStheory based on loop algebras of Lie superalgebras
has been found to generate supersymmetric hierarchies of known integrable systems (KdV,
NLS,...) under appropriate reductions [34, 35].

Recently, a connection between the Wilsonian low-energy limit of N = 2 super Yang-
Mills with or without adjoint matter and finite-dimensional integrable systems involving
ordinary Lie algebras was exhibited [36, 37]. This led to a conjecture [38] that integrable
systems based on Lie superalgebras could arise as an equivalent limit of N = 2 super Yang-
Mills systems coupled to general matter fields. A use of Lie superalgebras in integrable
systems could also be as gauge algebras of SDYM fields. The SDYM equations can then
be reduced via symmetry to integrable systems involving anticommuting degrees of free-
dom. However, these reduced systems will not be necessarily invariant under space(-time)
supersymmetries.

In what follows, the reduction by symmetry of the SDYM equations with values in Lie
superalgebras is considered. Section 2 begins with a review of such equations and their
linear systems. Section 3 pursues with the invariance conditions imposed on the fields and
introduces the notation for the classes of subalgebras of interest. Section 4 provides two
examples of reduction under simple subgroups. Finally, Section 5 summarizes the results
and indicates future directions of this work.

2 SDYM Equations and Linear Systems

In order to set our notation, let us recall the SDYM equations in R4:

F = ∗F, or Fµν =
1
2
εµνρσF

ρσ, (2.1)

with F = dω + ω ∧ ω, the curvature 2-form of the field strength, and ω, a 1-form of con-
nection with values in a Lie superalgebra (super Lie algebra) H of even dimensions m and
odd dimensions n [39-41] on a gauge bundle. In component form, εµνρσ is the completely
antisymmetric 4d tensor normalized to unity, and Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], where
Aµ are the Lie superalgebra valued components of the gauge field (µ, ν, ρ, σ = 1, ..., 4):

Aµ = Aa
µMa + ξα

µNα, (2.2)

where {Ma, a = 1, ...,m}, and {Nα, α = 1, ..., n} stand, respectively, for the bases of
the even and odd part of H. The fields Aa

µ and ξα
µ denote, respectively, functions on

E4 (orE(2,2)) with values in the even and odd parts of a Grassmann algebra of suitable
dimensions (i.e., CBL, where 2L−1 ≥ m, 2L−1 ≥ n) [41].

The Lax pairs, or linear systems related to (2.1), can be written as [17, 23]:

E4 (2.3a) E(2,2) (2.3b)

[D1 + iD2 − λ(D3 + iD4)]Ψ = 0, [D1 + iD2 + λ(D3 − iD4)]Ψ = 0,

[D3 − iD4 + λ(D1 − iD2)]Ψ = 0, [D3 + iD4 + λ(D1 − iD2)]Ψ = 0,
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where the covariant derivative is defined as: Dµ ≡ ∂µ +Aµ. The multiplet Ψ is composed
of even Grassmann valued functions on E4 × CP 1 (or E(2,2)× (upper (or lower) sheet
hyperboloid of H2)) holomorphic with respect to λ, i.e., ∂λ̄Ψ = 0, where the parameter
λ ∈ CP 1 (or upper (or lower) sheet hyperboloid of H2) and xµ are Cartesian coordinates
on E4 (or E(2,2)), µ = 1, ..., 4. The integrability of the linear system(s) (2.3) gives rise
to the SDYM equations (2.1). Both systems (2.1) and (2.3) are left invariant under
the conformal transformations SO(5, 1) (E4) (or SO(3, 3) (E(2,2))) as well as under the
gauge transformations generated by the Lie superalgebra H. A lift of the conformal
transformations to CP 1 (or H2-sheet), to be specified below, has to be introduced in order
to preserve the holomorphy of Ψ on E4 × CP 1 (or E(2,2) ×H2-sheet) with respect to the
complex structures induced by the linear systems. Let us add that the twistor construction
[5-7] is still valid when a (linear) Lie supergroup [39,41] based on a Lie superalgebra (H) of
dimensions (m/n) is selected as gauge group, since it could be interpreted as an extended
(linear) Lie group of (m+ n) 2L−1 dimensions [41].

3 Invariance Conditions and Lift to Parameter Space: a Re-
minder

The extension of a gauge algebra to a Lie superalgebra does not alter the formulation
of invariance conditions and the lift of the group action to the space of the parameter
λ, as defined for a Lie gauge algebra [17,23]. Briefly, two types of fields are involved in
the SDYM (2.1) and linear (2.3) equations: Yang-Mills fields (Aµ) and a multiplet (Ψ) of
scalar fields transforming under the fundamental representation of the gauge group.

The reduction under a subgroup G (with a Lie algebra denoted by G) of the space
symmetry group is effected via the substitution of the corresponding G-invariant fields.

The G-invariant Yang-Mills fields respect the following infinitesimal conditions [42-45]:

LXAµ = DµW ≡ ∂µW + [Aµ,W ], (3.1)

for all X ∈ G, where LX is the Lie derivative along the vector field associated to X, and
W is a function of G ×E4 (or G ×E(2,2)), into the Lie superalgebra H, the gauge algebra
characterizing the lift of the G-action to the gauge bundle. Moreover, the (m+n)-multiplet
Ψ will be infinitesimally G-invariant if the following (infinitesimal) conditions are met:

LX̃Ψ = −WΨ, (3.2)

for all X ∈ G, where X̃ denotes the lift of the G-action to the 6-dimensional space:
E4 × CP 1 (or E(2,2) ×H2).

These (infinitesimal) invariance constraints still allow an invariance up to a gauge trans-
formation, unless W = 0.

Let us restrict ourselves to isometry subgroups: i.e., SO(4)×⊃ T 4(E4) and SO(2, 2)×⊃
T 4(E(2,2)). A basis for the so(4) algebra acting on R4 can be decomposed into the direct
sum of two so(3) algebras:

X1 = −1
2
(M23 +M14), X2 =

1
2
(M13 −M24), X3 = −1

2
(M12 +M34), (3.3a)

Y1 = −1
2
(M23 −M14), Y2 =

1
2
(M13 +M24), Y3 = −1

2
(M12 −M34), (3.3b)
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where [Ta, Tb] = εabcTc, with either Ta = Xa or Ya, a = 1, 2, 3.
The matrices

[Mαβ ]µν = δµαδνβ − δµβδνα, (3.4)

α, β, µ, ν = 1, ..., 4, generate rotations in the xαxβ-plane.
Since the so(2, 2) algebra is split into two so(2, 1) subalgebras, it can then be represented

in R4 as:

A1 =
1
2
(N23 −N14), A2 =

1
2
(N13 +N24), A3 = −1

2
(N12 −N34), (3.5a)

B1 =
1
2
(N23 +N14), B2 = −1

2
(N13 −N24), B3 =

1
2
(N12 +N34), (3.5b)

where [Ta, Tb] = f c
abTc, with Ta = Aa or Ba, a = 1, 2, 3, f3

12 = 1, f1
23 = −1, and f2

31 = −1.
Here the matrices:

[Nαβ ]µν = δµαδνβ + δµβδνα, if µν 6= 12 and 34,

[Nαβ ]µν = δµαδνβ − δµβδνα, if µν = 12 or 34,
(3.6)

produce rotations or boosts in the xαxβ-plane.
Each subalgebra of the isometry (conformal) algebra can be used to reduce the SDYM

equations and their linear system bythe corresponding symmetry subgroup. However,
reduced systems are equivalent if symmetry subalgebras belong to the same conjugacy
classes of subalgebras under the adjoint action of the isometry (conformal) group itself [1,
2, 46]. Such a classification for so(4) . t4 can be found in Ref. 47.

Through their vector parts, which form a basis of antiholomorphic vectors, the linear
systems (2.3) induce complex structures (J ) on E4 × CP 1 or E(2,2) ×H2-sheet [17, 23]:

E4 × CP 1 E(2,2) ×H2

J = (sa(2Ya ρµ), εji ), J = (−sa(2Ba
ρ
µ), εji ), (3.7)

with sasa = 1, with : (h1)2 + (h2)2 − (h3)2 = −1, (3.8)

where sa and ha are, respectively, coordinates which describe λ on CP 1 and a sheet of
H2.

The main point of the procedure is that the holomorphy of the multiplet Ψ with respect
to the antiholomorphic vector field bases (related to J ) is preserved by the lift X̃ of the
group action if

LX̃J = 0, (3.9)

for all X ∈ G ⊆ so(5, 1) or so(3, 3), where LX̃ stands for the Lie derivative along X̃.
For the above mentioned isometry algebras, the lifted vector field bases which obeys to

(3.9) are:

e(4) e(2, 2)

X̃a = (Xa µν)xµ∂ν , Ãa = −(Aa
µ

ν)xν∂µ,

Ỹa = (Ya µν)xµ∂ν − εabcs
b∂sc , B̃a = −(Ba

µ
ν)xν∂µ − f c

abh
b∂hc ,

P̃µ = ∂µ, P̃µ = ∂µ.

(3.10)
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4 Reduced SDYM Equations and Linear Systems

The method is identical to the procedure presented in Refs. 17 and 23. The orbit variables
{χm,m = 1, ..., d ≤ n} and invariant variables {ξA, A = 1, ..., 6 − d} are determined
using the lifted n-dimensional vector field basis of the chosen symmetry algebra (G). A
(new) spectral parameter (ζ) can be selected with the condition: LXiζ 6= 0, for some
i = 1, ..., n. TheG-reduced SDYM equations andG-reduced linear systems are obtained by
substitution of the coordinates χm and ξA, as well as the G-invariant Yang-Mills fields (Aµ)
and multiplet (Ψ) in equations (2.1) and (2.3). Let us note that the reduced systems will be
left invariant by residual gauge transformations generated by a residual Lie superalgebra,
if the centralizer of the image of the homomorphism of the isotropy subalgebra into H
with respect to H is itself a Lie superalgebra [36].

Two examples showing how the above method is applied are given below.
1. E4, G-basis = {P1, P2, P3}, H = osp(1/2, R)

According to (3.9), the lifted translations are not modified by a parameter contribution:

P̃1 = ∂1, P̃2 = ∂2, P̃3 = ∂3. (4.1)

Therefore, the orbits coordinates are:

x1, x2, x3, and λ̄. (4.2)

For a simpler treatment, the coordinate λ̄ can be seen as an orbit variable if the holo-
morphy condition on Ψ: ∂λ̄Ψ = 0, is equivalently read as an invariance constraint with
respect to translations along this coordinate.

We are then left with the invariant coordinates:

x4, λ. (4.3)

The G-invariant Yang-Mills fields Aµ can be written as:

Aµ(x4) = Aa
µ(x4)Ma + ξα

µNα, (4.4)

with:

M1 =
(

0 ~0
~0T σ1

)
, M2 =

(
0 ~0
~0T −iσ2

)
, M3 =

(
0 ~0
~0T σ3

)
,

N1 =

 0 1 0
0 0 0
1 0 0

 , N2 =

 0 0 1
−1 0 0
0 0 0

 , (4.5)

while the G-invariant multiplet of scalar fields Ψ has the form:

Ψ = ψ(x4, λ). (4.6)

The reduced linear system (2.3) follows from the substitution of (4.2)-(4.6):

[iλ∂4 − (A1 + iA2) + λ(A3 + iA4)]ψ(x4, λ) = 0, (4.7a)

[−i∂4 + λ(A1 − iA2) + (A3 − iA4)]ψ(x4, λ) = 0, (4.7b)

where the parameter of the reduced equations is the original variable λ.
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The involution of the Lax pair (4.7) produces the {P1, P2, P3}-reduced SDYM equa-
tions (2.1), where the field strengths Fµν depend only on the coordinate x4. This system
constitutes an integrable set of 15 equations for Aa

µ and ξα
µ . It can be further simplified

with the gauge choice Aa
4 = ξα

4 = 0, for all a = 1, 2, 3, and α = 1, 2, and the algebraic
condition Aa

i = δa
i ωi, with i = 1, 2, 3, which then lead to the extension with anticommuting

fields of the so(2, 1)- Nahm’s equations:

∂4ω1 + 2ω2ω3 + ξ12ξ
1
3 − ξ22ξ

2
3 = 0,

∂4ω2 − 2ω3ω1 + ξ13ξ
1
1 + ξ23ξ

2
1 = 0,

∂4ω3 − 2ω1ω2 − ξ11ξ
1
2 − ξ21ξ

2
2 = 0,

(4.8)

and the linear equations for odd components ξµ:

∂4ξ
1
1 − ω2ξ

2
3 + ω3ξ

1
2 = 0, ξ11ξ

1
2 − ξ21ξ

2
2 = 0,

∂4ξ
2
1 + ω2ξ

1
3 − ω3ξ

2
2 = 0, ξ11ξ

1
2 + ξ21ξ

2
2 = 0,

∂4ξ
1
2 + ω1ξ

2
3 − ω3ξ

1
1 = 0, ξ12ξ

1
3 + ξ22ξ

2
3 = 0,

∂4ξ
2
2 + ω1ξ

1
3 + ω3ξ

2
1 = 0, ξ12ξ

2
3 + ξ22ξ

1
3 = 0,

∂4ξ
1
3 − ω1ξ

2
2 + ω2ξ

2
1 = 0, ξ13ξ

1
1 − ξ23ξ

2
1 = 0,

∂4ξ
2
3 − ω1ξ

1
2 − ω2ξ

1
1 = 0, ξ13ξ

2
1 + ξ23ξ

1
1 = 0.

(4.9)

However, equations (4.9) for ξα
µ are rather stringent and force these fields to vanish for

nontrivial configurations: ωi, i = 1, 2, 3. A similar set of reduced equations has been ob-
tained for H = su(2/1) when algebraically constrained to recover extended so(3)-Nahm’s
equations. Let us add that integrable reductions leading to 2d or 3d residual differential
systems can be carried out via, for example, translations .

In order to illustrate the method in the case of a symmetry subalgebra bearing a
nontrivial lift, the nilpotent Lie superalgebra su(1/1) was chosen for simplicity, even if it
gives rise to a system of reduced equations that still can be solved without the use of a
linear system.
2. E(2,2), G-basis = {B3, P3, P4},H = su(1/1)

B̃3 =
1
2
(x1∂2 − x2∂1 + x3∂4 − x4∂3) + i(λ∂λ − λ̄∂λ̄), P̃3 = ∂3, P̃4 = ∂4. (4.10)

Including Pλ̄-invariance, the orbit coordinates are given by:

θ = − arctan

(
x2

x1

)
, x3, x4, λ̄. (4.11)

The invariant variables are then:

r =
√

(x1)2 + (x2)2, ζ = e2iθλ, (4.12)

where ζ corresponds to a new parameter.
The G-invariant Aµ can be written as:

(A1, A2, A3, A4)T = e−2θB3

[
(u1, u2, u3, u4)TM1+

(v1, v2, v3, v4)TN1 + (w1, w2, w3, w4)TN2

]
,

(4.13)
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where uµ = uµ(r), vµ = vµ(r), wµ = wµ(r), and the matrices M1, N1, N2 are defined as:

M1 =
(
i 0
0 i

)
; N1 =

(
0 i
1 0

)
; N2 =

(
0 1
i 0

)
. (4.14)

The G-invariant multiplet is simply a function of the invariant coordinates:

Ψ = ψ(r, ζ). (4.15)

Substitution of (4.11)-(4.15) into (2.3) leads to the G-reduced linear system:

∇1ψ ≡
[
∂r +

2ζ
r
∂ζ + a+

12 + ζa−34

]
ψ = 0, (4.16a)

∇2ψ ≡
[
ζ(∂r −

2ζ
r
∂ζ + a−12) + a+

34

]
ψ = 0, (4.16b)

where:

a±12 = (u1 ± iu2)M1 + (v1 ± iv2)N1 + (w1 ± iw2)N2,

a±34 = (u3 ± iu4)M1 + (v3 ± iv4)N1 + (w3 ± iw4)N2.
(4.17)

Using the holonomic version of (4.16) with the operators r∇1 and r
ζ∇2, the integrability

of the Lax pair (4.7) provides the corresponding G-reduced SDYM equations.
Let us rapidly recall that for Grassmann valued equations, the solution starts with

solving the “body” or “level 0” part, which in the case of SDYM equations amounts to
solve gauge Lie algebra reduced integrable systems. This solution is then inserted as
background to the “level 1” equations for the anticommuting fields, which are followingly
substituted in the field equations of “level 2”, and so on.

5 Conclusion

In the above, the method of symmetry reduction has been applied to the self-dual Yang-
Mills equations and their linear systems, or Lax pairs, extended to Lie superalgebras as
gauge algebras, on the Euclidean space and pseudo-Euclidean space of signature (2, 2) in
four dimensions. The reduced systems are left with anticommuting degrees of freedom. As
for the case of a Lie gauge algebra, a lift of the group action to a 6-dimensional space formed
of the product of E4 (orE(2,2)) by the parameter space CP 1 (or H2-sheet) preserving the
holomorphy of the multiplet of scalar fields (Ψ) was essential in the reduction of the linear
systems. Two examples were added to illustrate the method. It was found that the
anticommuting fields are strongly restricted for a residual dimension equal to 1.

Further reductions by representatives of conjugacy classes of the associated conformal
group could be carried on E4 or E(2,2). One could also investigate higher-dimensional
and/or self-dual spaces versions of these models with the same methods as well as re-
ductions with Yang-Mills fields and multiplets of scalar fields invariant up to a gauge
transformation. Finally, embeddings of known superintegrable systems via algebraic con-
ditions could be searched among the reduced systems.
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